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Abstract. This review deals with the recent progress achieved in the understanding of vortex
dynamics in discrete arrays of classical Josephson junctions, JJAs. We first give an up-to-date
overview of the discrete models currently used to describe the physics of JJAs: the ‘JJ array
formalism’, the discretized version of the sine–Gordon equation and the Frenkel–Kontorova
model. Special emphasis is put on the recent reformulation of the screening term that makes
use of the full-inductance matrix. The relationship between the phase and the vortex–particle
dynamics is also discussed. An overview of the ‘state of the art’ in the understanding of the
single-vortex dynamics in overdamped JJAs follows; the dependence of the motion of the vortex
on its size (i.e. on the screening strength, the sample geometry and the coupling anisotropy,
EJx/EJy ) and, also, on the bias current is pointed out and discussed. A peculiar phenomenon,
alternate-vortex motion, is also briefly illustrated. Subsequently, we review the single-vortex
dynamics in underdamped JJAs. A short description of the conditions that lead to the observation
of anomalous dissipation, vortex reflection, ballistic vortex motion, resonances, instabilities and
row switching is given. To conclude, we discuss open problems and future perspectives of the
research on JJAs.

1. Introduction

Arrays of Josephson junctions (JJAs), see figure 1, constitute one of the most intriguing
examples of coupled non-linear oscillators [1, 2]. The diffuse interest in such complex
systems is due not only to the richness of their physics (the macroscopic quantum
phenomena, phase transitions, locking and chaos etc) which finds counterparts in many
physical and biological systems [3], but also to the possibility of using JJAs in the
production of useful cryoelectronic devices with unique properties and extremely low power
consumption: Josephson voltage standards [4], fast logic elements [5], neural networks
[6] and photofluxonic detectors [7, 8] (based on overdamped JJAs), oscillators and other
hyperfrequency cryodevices (based, instead, on underdamped JJAs) [9] and vortex-flow
transistors [10].

During the last five to ten years the number of publications devoted to the JJAs has
continuously increased. The reasons for this are as follows.

(a) An improved reliability of the lithographic and fabrication processeswhich allows a
much higher degree of integration than before.

Nowadays, cryoelectronics circuits may contain up to some hundreds of Josephson
junctions, whose physical parameters are identical within an acceptable dispersion; the
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Figure 1. Examples of JJ arrays: (a) a 2D square network; (b) a 2D triangular network; (c) a
JJ ladder (one JJ is placed on each branch of the array and each grain is characterized by a
single phase,θj ); (d) 2D granular superconductors: the grains are now extended and the phase
changes along the grain. Theφs are the gauge-invariant phase variations along the junction (J)
and along the grain (G):φJ = θi − θj −Aij . Aij is the contribution due to the vector potential
and it is defined in the text. (e) and (f ) are schematic representations of, respectively, a SNS and
a SIS Josephson junction with their equivalent electric circuits (see the text for more details).
The external magnetic field,B, applied perpendicularly to the samples generates a frustration
f = BS/80 whereS is the surface of the plaquette.

spread of such parameters is usually kept within a few per cent of their average values.
Reliable fabrication processes make it possible to compare, with a certain degree of
confidence, experimental results obtained for real systems and computer simulations of
model systems.

(b) The recent availability of inexpensive personal workstations.
Simulations of large discrete systems, like the JJAs, based on realistic models, have

been quite impossible for a long time (they were too expensive and time consuming);
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now, on the other hand, a few thousands of dollars are sufficient to buy a computer
powerful enough to allow the simulation of both the static and the dynamical properties
of JJAs with geometrical dimensions comparable to those of the real systems employed in
experiments. Numerical simulations are essential if one wishes to study the dynamics of
systems composed of many coupled non-linear oscillators, like the JJAs, for which there do
not exist analytical descriptions and for which the interpretation of the experimental data is
not at all straightforward.

(c) The discovery of high-Tc superconductorswhich renewed the interest in super-
conducting cryoelectronics—with the hope of producing devices able to operate at liquid
nitrogen temperatures.

The fabrication of reliable high-Tc superconducting junctions is still made difficult by
their intrinsic short coherence length which imposes the requirement of controlling the
junction parameters on a scale much shorter than is currently possible with up-to-date
fabrication technologies; JJAs, consequently, have been employed to model and study the
effect of the ‘disorder’ in the high-Tc superconducting devices [11]. In addition, most of the
high-Tc superconductors are materials in which the bidimensional superconducting layers
seem to be coupled along thez-axis through the Josephson effect. High-Tc materials, thus,
can be likened to stacks of extended Josephson junctions [12] and can be modelled, again,
by means of JJAs, although only anisotropic ones.

All of the interesting applications of JJAs in cryoelectronics rely on the formation and
on the displacement of special quasi-solitonic excitations of the gauge-invariant phase: the
so-called vortices/antivortices. A vortex obeys the fluxoid quantization rule: the sum of
the gauge-invariant phase circulation along any path enclosing the vortex plus the magnetic
flux through the surface defined by this path has to be always 2nπ wheren is an integer;
see figure 2.

Figure 2. An example of topological excitations of the JJA phase configuration of a ladder,
32× 2: the 2π phase variation (�) and the associated voltage peak (•). The topological excit-
ations are travelling from left to right.

Vortex–antivortex couples develop whenever a perturbation breaks the symmetry of
the flowing current on a local scale and acts for long enough to transfer into the system
the needed formation energy. As an example, in biased samples, vortices form because
of current spikes, geometrical defects, an inhomogeneous spatial distribution of the bias
current, a perturbation caused by an incoming photon and so on [8].

Why are vortices/antivortices so relevant for cryoelectronic devices?
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In overdamped JJAs, as we will show later, vortices can be likened to massless particles;
their displacement can be used to transfer elemental bits of information. Indeed, by
controlling the vortex formation, transmission, trapping and annihilation one can build very
fast digital circuits (having clocks operating at some hundreds of GHz) and, it is hoped,
very fast computer facilities [5].

In underdamped JJ systems, on the other hand, the vortices acquire a mass (i.e. a
kinetic contribution to their energy) and can be reflected at the border of the sample. One
can use the periodic reflections of the vortices to fabricate oscillators able to emit and detect
electromagnetic radiation in the hyperfrequency domain. Unfortunately, the electromagnetic
power emitted by a single oscillator (vortex/antivortex) is quite low (of the order of a
microwatt) as, also, is its output impedance (a few ohms) [9].

In JJAs, however, under certain experimental conditions, several vortices may couple
with each other giving rise to a coherent motion (a dynamical locked state) that, in principle,
should lead to an electromagnetic emission whose power is proportional toN2, whereN is
the number of oscillators involved in the process. In addition, due to the array geometry,
the output impedance of the devices is also expected to increase up to values reasonable
enough to allow their integration in hybrid circuits.

At this point we have, we hope, convinced the reader that a careful investigation of
vortex dynamics is essential if one is to achieve a correct understanding of the JJA physics
and, as a consequence, to describe in a correct manner the operational mode of the cryo-
devices based on JJAs.

In the past, single-vortex dynamics has been the subject of a number of reviews; all of
them, however, dealt with systems that represent the continuous counterpart of the JJAs:
the long and the stacked Josephson junctions [13–16]. The same level of attention has not
been given to the description of the vortex dynamics developed within the framework of
‘JJ array formalism’. As far as we are aware, there are many interesting articles available
describing research on the subject, but no reviews. In view of this, perhaps it is the right
time to make an effort to give a review of this area.

Further motivation for writing this article was provided by the need to review the
important progress recently made in the understanding of the JJA physics related to the
reformulation of the ‘JJ array formalism’ to include a full-screening term—a reformulation
that was first implemented by Phillipset al [17] and then, in an independent way, by other
groups [18, 19].

Now, as a result of the introduction of the full-inductance matrix, the mutual inductance
of the currents flowing in the array (the Biot–Savart law) can be worked out in a precise
manner and it is no longer introduced as anad hocmean-field quantity [20]. As regards
theXY -model, one has to consider the development of the ‘JJ array formalism’ to include
the full-inductance matrix as a decisive step towards a more realistic description of the JJA
physics: it allowed for the introduction of a tunable and finite penetration depth (λ⊥).

The review is organized as follows.
The first part of the next section introduces the reader to the ‘JJ array formalism’ as

currently used, while the second part of the section will be dedicated to comparing the ‘JJ
array formalism’ with other discrete models such as the sine–Gordon and Frenkel–Kontorova
ones and to discussing the equivalence between the phase and the vortex formulation of the
JJA dynamics.

Sections 3 and 4 then deal with single-vortex dynamics, respectively in overdamped and
underdamped JJAs. Experiments and numerical simulations are compared and discussed.

Finally, in the last section, we briefly point out open problems and future lines of
development.
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2. The discrete ‘JJ array formalism’

2.1. The discrete JJA Lagrangian

The Lagrangian of a Josephson junction array subjected to the action of an external forcing
term (a bias current applied along they-direction) and to a local random force (the thermal
noise) is given by

L = EJ
{∑

ij

(cosφij − 1)+ βc
2

∑
ij

φ̇2
ij +

∑
i;kl

iext;i [(DG)−1D]i;klφkl −
∑
ij

ĩij φij

− 1

2

∑
p,q

(Rφ + 2πf )p3
−1
p,q(Rφ + 2πf )q

−
∑
p,i

(Rφ + 2πf )p(3
−11− (RRT)−1RM)p,i iext;i

}
. (1)

Here,φij = θi − θj − aij is the gauge-invariant phase difference along the junctionij . θi is
the phase of the pseudo-wavefunction describing the state of graini, |9i | exp(iθi), where
|9i |2 = ns (ns is the density of the superconducting pairs and|9i | is constant for all of the
grains: |9i | = |9|). aij is related to the vector potentialA through

aij = 2π

80

∫ j

i

A · dx.

i, j stand for nearest-neighbour points andp runs over the plaquettes of the array.3 and
1 will be defined further on in this section.

The physical meaning of operatorsPr , D andG is simple to understand. As is well
known, any vector field can be expressed as the sum of a solenoidal field plus an irrotational
one (with vanishing divergence and curl, respectively). We call the operator that, applied
to any field, selects its solenoidal (irrotational) componentPr (Pd ). These operators can
be expressed asPd = G(DG)−1D (whereG andD are discrete versions of the operator
gradient and divergence) andPr = RT(RRT)−1R (with R the discrete rotational operator).
Of course,RG = 0, PrPd = 0, PrPr = Pr , PdPd = Pd , Pr + Pd = 1. We have chosen the
London gauge (∇ ·A = 0), so(DG)−1Dφ = θ , (Pdφ)ij = θi − θj and(Prφ)ij = −aij .

Theφij are connected to the normalized junction voltage dropv = (2e/h)V measurable
at the junction through the Josephson relation:φ̇ij = 2πv.

EJ = 80Ic/2π is the junction coupling energy and80 is the elemental quantum of
flux. (80 = h/2e = 2.068× 10−15 V s.) 3ij ;kl is the full-inductance matrix, normalized to
80/(2πIc). βc = 2eIcR2C/h̄ is the McCumber parameter whereR andC are respectively
a characteristic shunt resistance and a capacitance (see further on for their definition).ĩ is
a thermally induced noise current. The currents are normalized to the critical current of the
junction, Ic.

τ = 2eReIc
h̄

t

is the normalized time.
Equation (1) has been written using the conjugate pair of variablesφ andφ̇ to stress that

the gauge-invariant phases are the relevant dynamical variables (the equivalence between
the phase and the vortex dynamics is discussed further on).

Let us now examine one by one the terms of the Lagrangian. The first one accounts for
the energy stored in the Josephson junctions. The second term represents the energy stored
in the electric field; it depends both on the capacitance of each single island with respect to
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the ground,Ci , and on the capacitance between the nearest-neighbour islands,Cij , i.e. the
capacitance of the junctions. SinceCij is always much larger thanCi [22], in the rest of
this review the contribution due to the self-capacitance will be neglected.

The third and fourth terms are related to the work done on the system by the external
current generator (either dc or ac) and by a white-noise current (that takes into account the
thermal noise generated by the resistors). Usually this latter is chosen such that

〈iij (τ )〉 = 0

and

〈iij (τ + τ0)ikl(τ )〉 = 2kBT

Rij
δ(τ0)δij ;kl .

The last terms of equation (1) represent, as stated in the introduction, the main difference
between theXY -formalism, whereλ⊥ is always taken equal to∞ [21], and the ‘JJ array
formalism’, whereλ⊥ can assume finite values. It is related to the energy stored in the
magnetic field due to the mutual inductance of branches of the array. The normalized
inductance matrix (3) connects the induced magnetic flux through the plaquettes to the
mesh currents defined on each cell (for a definition of mesh current, see figure 1):

8ind;p =
∑
p,q

3p,qiq . (2)

The vector potential includes the contributions from both the external and the internal
magnetic fields:

aij = 2π

80

∫ j

i

(Aij ;ext +Aij ;int ) · dr. (3)

The flux of the external magnetic field through plaquettep is

(Raext )p = 2πfp = 2π

80

∫
p

Bext · dS (4)

whereS is normal to the surface of the plaquette,S, andBext =∇×Aext .
The aij ;int are due to the currents circulating in the array (iij ) [19]:

aij ;int =
∑
kl

1

4πλ⊥
ff ij ;klikl (5)

whereλ⊥ is the normalized effective penetration depth of the array [17]:

λ⊥ = 1

2π

80

µ0Icla
(6)

with la the lattice spacing of the array. ffij ;kl is a form factor matrix related to the geometry
of the array. In most cases all of the non-diagonal elements of the ff matrix can be assumed
to depend only on the relative distance between the links of the array,r = rij − rkl , and not
on the shape of the Josephson junction. The self-term, on the other hand, diverges when
r → 0 and this forces us to consider the particular geometry of the junction in order to
introduce the appropriate geometrical cut-off [19].

The link currents are related to the mesh currents throughilink = RTimesh + Miext .
Mij ;k = 1 if k is a site belonging to the first row, andij is a vertical link aligned with it;
otherwise,Mij ;k = 0. The Biot–Savart equation (5) can be expressed as

8ind = 3imesh +1iext ⇒ imesh = 3−1(8ind −1iext ) (7)



Vortex dynamics in classical Josephson junction arrays 1459

where the matrix1 is defined as

1 = 1

4πλ⊥
RffM (8)

and3 can be easily related to ff:

3 = 1

4πλ⊥
RffRT. (9)

We stress again that by means of equation (5) the current contribution to the local vector
potential,aij ;int , can be worked out exactly for each link and is no longer introduced as a
mean-field quantity. This difference may be quite important, especially for finite 2D systems
with relatively small dimensions, such as the ones commonly used in experiments.

Since in this review we deal with arrays for which charging effects and the fluctuations
of the amplitude of the superconducting order parameter are negligible, we have dropped
Lagrangian terms like−h̄nsPd θ̇i and−(ns− ñ)qPdVi that are related to the displacement of
charges (ns is the density of the superfluid,ñ is the background charge density andVi is the
scalar potential); by applying Lagrangian equations to these terms, the Josephson voltage
relationship can be obtained [23].

2.2. The equation of motion

The Euler–Lagrange equations for our system are

d

dt

(
∂L

∂φ̇ij

)
− ∂L

∂φij
+ ∂F
∂φ̇ij
= 0 (10)

whereF is Rayleigh’s function giving the ohmic dissipation

F = 1

2

∑
ij ;kl

φ̇ij (s)αij ;kl φ̇kl(s). (11)

α is an operator defined as

α = G(DG)−1r−1(DG)−1D + R−1 (12)

wherer andR are diagonal operators whose elements are, respectively,Ri (the resistance
of the superconducting islandi with respect to the ground) andRij (the resistance between
the ith and thej th islands, i.e. the junction resistance due to the tunnelling of the quasi-
particles for SIS junctions and the normal-state resistance for the SNS junctions). In general
one neglects the self-resistance (the resistive shunted model, RSJ) and, also, the coupling
between the tunnelling quasi-particles and the environment; one should note, however, that
the island resistance with respect to the ground is the basic dissipative term in the TDGL
model [25], while the coupling to the environment may lead to a redefinition ofEJ for
junctions with a normal resistance of the order of 100� (the environment impedance) [24].
Moreover, almost always one assumes a constantRij , neglecting the dependence ofRij on
φ; basically, this is equivalent to shunting the junction with an external resistanceRe smaller
than the junction resistance. To take account of the dependence ofRij (φ) = 1/G(φ) on φ
one can use the following expression [26]:

G(V ) = Gsg + (1−Gsg)[1− tanhK(1− V/Vg)]/2
whereGsg is the ratio of the sub-gap conductance to the normal-state conductance,K is a
constant andvg = 4IcRn/π is the gap voltage.

Another common approximation is that of neglecting the spatial distributions of theRij
that may result from the limits of the fabrication process.
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Thus, neglectingRi and takingRij as a constant, from equation (10) one obtains a set
of equations whose matrix form, in normalized units, is

βcφ̈+ φ̇+ ic sinφ + ĩ− [G(DG)−1]iext − PrMiext
+ RT3−1(Rφ+ 2πf)+ RT3−11iext = 0. (13)

By considering the irrotational and solenoidal components of equation (13) one obtains
the two sets of Kirchhoff and the Biot–Savart equations. In fact, by taking the divergence
of equation (13) one has

D(βcφ̈+ φ̇+ ic;φ sinφ+ ĩ) ≡ Dilink = iext (14)

where theilink are the currents flowing along the links. This vector equation reads, for each
nodei, ∑

j

βc
d2φij

dτ 2
+
∑
j

dφij
dτ
+
∑
j

ic;ij sin(φij )+
∑
j

ĩij − ii;ext = 0. (15)

On the other hand, by realizing thatG(DG)−1iext = G(DG)−1Dilink ≡ Pdilink, and
using ilink = RTimesh + Miext , Pr + Pd = 1 andPdRT = 0, we can group the first six
terms in equation (13) to give

ilink −G(DG)−1iext − PrMiext = RTimesh. (16)

Applying (RRT)−1R to (13), one obtains the Biot–Savart equation (7).
It is worthwhile stressing that, since the nodes of the array are represented by point

grains, fluxoid quantization is automatically fulfilled:∑
ij∈p

φij + 2πf +8ind = 2npπ. (17)∑
ij∈α stands for the anticlockwise sum along the links of theα-plaquette and theφij

are restricted to varying in the interval(−π, π ]. 8 = 2πf +8ind is the total flux through
the cell.

It should be noted that in a recent paper Lucheroni [27] has shown that the dynamics
of the mesh currents and that of the phases of the superconducting nodes can be separated
by making the following substitution for the gauge-invariant phase:φ = DTθ + (RL)Timesh
(a fact that implies the existence of two types of dynamics having different timescales, as
clearly pointed out in reference [18]); if just the self-inductance of the cells is considered,
then RL can be factorized asLR, whereL is the self-inductance. As a consequence a
reduction in the number of coupled differential equations is obtained.

2.3. The JJA formalism and the granular superconductors

The ‘JJ array formalism’ and its Lagrangian allow us also to describe the case of weakly
coupled granular superconductors for which the phases are not uniform inside each grain.
To do this one should consider the intragranular currents and phase shifts. A way of
implementing this is to describe each superconducting site as a plaquette; a supercurrent,
linear in the phase, flows within it. Thus, we must generalize the gauge-invariant phases,
currents and fluxes, to add new variables corresponding to the superconducting-grain links
and cells:

φ→ φ̂ ≡ {φJ , φS}
8→ 8̂ ≡ {8J ,8S}
ilink → îlink ≡ {ilink;J , ilink;S}
imesh→ îmesh ≡ {imesh;J , imesh;S}.
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The intragranular currents are proportional to the gradient of the phase along the border of
the grain:iij ;S = iφij ;S wherei = nseh̄/m (ns is the density of superconducting pairs). The
discrete operators used up to now must also be generalized. Now, the curl along a plaquette
contains contributions both from Josephson and superconducting branches; see figure 1:(

8J

8S

)
= −R̂

(
φJ
φS

)
R̂ ≡

(
R RJS
0 RSS

)
. (18)

Inside the grain, the magnetic flux is 0 (RSSφS = 0), and thusφS is an irrotational field
(φS = GSSV ). On the other hand,̂ilink = (R̂)Tîmesh + M̂iext (M̂ is the immediate
generalization of matrixM defined above). The divergence and gradient operators are also
generalized:D→ D̂, G→ Ĝ, and the expressionŝD = (Ĝ)T, R̂Ĝ = 0 are still valid. The
Biot–Savart equation now reads

8ind;J = 3̂îmesh + 1̂iext 3̂ ≡ (3 3JS) (19)

where contributions coming both from Josephson-like and from superconducting currents
are considered. As previously stated, the link currents are related to the mesh currents
through (

ilink;J
ilink;S

)
=
(
RT 0
RT
JS RT

SS

)(
imesh;J
imesh;S

)
+ M̂iext . (20)

Zero magnetic flux inside grains impliesRSSφlink;S = 0. This, together with equation (20),
givesRSSRT

JSimesh;J = −RSSRT
SSimesh;S ; here,M̂ has been defined in such a way that the

curl of M̂iext is null in the superconducting plaquettes (see figure 1). We can now re-express
the Biot–Savart relation as

8ind;J = 3̃imesh;J + 1̂iext 3̃ ≡ 3−3JS(RSSR
T
SS)
−1RSSR

T
JS. (21)

The generalized Lagrangian is now

L(φ̂,
˙̂
φ) = EJ

{
cosφJ − 1+ βc

2
φ̇

T
J φ̇J + (iext )T[(D̂Ĝ)−1D̂]φ̂− ĩTφJ −

i

2
(φS)

TφS

− 1

2
(R̂φ̂+ 2πf + 1̂iext )T3̃−1(R̂φ̂+ 2πf + 1̂iext )

+ φ̂R̂T(R̂R̂T)−1R̂M̂iext

}
. (22)

Equation (10) applied to (22) gives a set of Euler–Lagrange equations. On applying
D̂ to these equations, Kirchhoff expressions are obtained. The Biot–Savart law is then
obtained by applying(R̂R̂T)−1R̂. As φS = GSSV , 8S = 0 is trivially obtained.

This procedure considerably increases the number of independent variables of the
problem, and becomes highly CPU-time consuming. For a simplified version of the model,
see, e.g., [27]

To conclude, we wish to point out that the forcing term,ii;ext , may include both a dc
component and an ac term,iac sin(ωt). The presence of the latter opens up a vast field
of research related to the competition between the frequency of the external forcing terms
and the characteristic frequencies of the JJAs. In this review, however, we will restrict
consideration to the case of an external dc force (the autonomous case). A description of
the dynamics in the presence of an ac forcing term (the non-autonomous case) will be dealt
with in a forthcoming paper [28]. Interesting contributions on this subject can be found in
references [18, 29].
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2.4. Comparison with other discrete models

Long junctions are usually described by means of the sine–Gordon equation. The phase-
invariant gauge is a continuous function that varies along the junctionφ(x), and obeys the
equation [13]

βcφ̈ − c ∂
2φ

∂x2
+ sin(φ) = −αφ̇ + d ∂

2φ̇

∂x2
− γ. (23)

Hereβc is the McCumber parameter andαφ̇ is the usual resistive term due to the tunnelling
of normal electrons across the junction; thed ∂2φ̇/∂x2 term accounts for the dissipation due
to the flow of normal electrons parallel to the junction [30];γ = i/ic is the usual bias term.
If one neglects the third-derivative term and discretizes this model [31, 16], one obtains

βcφ̈n + αφ̇n + in sin(φn) = iext;n + 1

w2
∇2φn (24)

where∇2φn = 2φn − φn−1− φn+1 is the discrete Laplacian, andw = D/λj is the discrete-
ness parameter (D is the distance between pointsi andj , andλj is the junction penetration
depth). The continuous model is obtained by makingh→ 0.

An analogous model is obtained when considering 1D Josephson junction arrays, as
shown in figure 3. In fact, conservation of the current at nodei yields

βcφ̈i + φ̇i + sin(φi) = iext + ii − ii−1. (25)

Here, theφi are the vertical gauge-invariant phases andii is the mesh current for celli, as
defined above. Along the superconducting horizontal links, the current density is given by

JS = [(nseh̄)/m](∇θ − (2π/80)A)

(ns is the superfluid density). Making the approximation thatJS is uniform, the (normalized)
superconducting current isiS = σJS/Ic (σ is the cross-section of the current). Integrating
the term∇θ along the border of plaquettei, one obtains∮

(∇θ) dx = 2nπ

which implies

2ii = σ

IcD

nseh̄

m
(2nπ − φi+1+ φi −8i) (26)

and thus

ii − ii−1 = σ

IcD

nseh̄

2m
(φi+1+ φi−1− 2φi)+8i−1−8i + 2π(ni − ni−1). (27)

If the array inductance is neglected and the external field is uniform (8i = 2πf ), we
obtain an equation which is formally equivalent to (24), withw2 = (IcD/σ)2m/(nseh̄),
plus an extra term taking into account the vortices existing in the array. Note that here
the expression forw is strictly related to the characteristics of the supercurrent flowing in
the horizontal branches, while that given in equation (24) derives from the discretization
of the Josephson current, a procedure that has to be carried out for performing numerical
simulations.

To include screening effects [32], one can proceed as follows. The mesh currents are
linked to the flux across the plaquettes by8 = 3imesh + 1iext . If the external current
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(g)

Figure 3. (a) A long Josephson junction; (b) a long Josephson junction ring; (c) a stacked
junction; and their discrete counterparts: (d) an extremely anisotropic ladder (an inductively
coupled 1D JJ chain); (e) an extremely anisotropic ring (i.e. a ladder with periodic boundary
conditions); (f ) an extremely anisotropic 2D array. The coupling along thex-branches (no
junction) is much stronger than the coupling along they-branches. (g) A schematic representation
of a dynamical system described by the Frenkel–Kontorova equation.

is homogeneous,1p,j iext;j = ξiiext , whereξi =
∑
j 1p,j , Now, on neglecting the non-

diagonal terms of3, the magnetic flux is given by8i = 30,0ii + ξiiext + 2πf and thus the
currentii is given by

(1+ α30,0)ii = α(2niπ + φi+1− φi)− αξiiext − α 2πf (28)

where

α = σ

IcD

nseh̄

2m
.
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The limit λ→∞ implies30,0→ 0, and equation (27) is obtained. However, whenλ⊥ is
small enough that30,0 > 1, the whole of equation (28) must be considered, and thus the
current conservation at theith node reads

βcφ̈i + φ̇i + sin(φi) = iext
(

1− α

1+ α30,0
(ξi − ξi−1)

)
+ α

1+ α30,0
(2π(ni − ni−1))+ ε (29)

whereε contains the contribution to the currentsii , ii−1 coming from the fluxes across the
rest of the plaquettes. Neglecting the non-diagonal components of3, again an equation
formally equivalent to (24) is obtained, withw = √30,0; note that, in this particular system,
λj ∝

√
30,0.

In all of the sine–Gordon-like equations considered above,w can be interpreted as a
generic coupling strength of the vertical phases. The limitw→ 0 implies thatφi → φi+1;
large values ofa allow large horizontal variations of the phases.

In fact, the discrete sine–Gordon form is an approximate version of the equation of
motion derived from the ‘JJ array formalism’, for when the phases vary slowly along the
x-direction [33]. In fact, if one writes down the equations of motion (imposing Kirchhoff’s
law) for any pair of opposite nodes in the array(θi,up, θi,down), and subtracts them, one gets
the following equation:[

1−
(
Cx

2Cy
∇2

)]
βc

d2

dt2
(φ)n;y +

[
1−

(
Ry

2Rx
∇2

)]
2

Ry

d

dt
(φ)n;y + ic sin(φn;y)

− ix

2iy

∑
i=±1

cos[ψ(n)− ψ(n+ i)] sin[φ(n)− φ(n+ i)]/2= iext . (30)

Here,ψ(i) = θi,up + θi,down, and theφs are, as usual, the gauge-invariant phases along
vertical links. Equation (30) becomes sine–Gordon-like if: (a) all of the combined space
and time derivatives of order three or higher are negligible; and (b) the variation ofθ along
the x-axis is sufficiently slow that the cosine factor can be taken as 1, and the sine factor
can be linearized:

βc
d2

dt2
(φ)n;y + α d

dt
(φ)n;y + in;y sin(φn;y)− iext − ix

2iy
∇2(φ)n;y = 0. (31)

The ∇2 operator emerges in a natural way because of the coupling along thex-direction
and because of the imposition of Kirchhoff’s conservation law at the nodes.

On comparing equations (24) and (31) one immediately sees that in the latter the role of
the discreteness factor is played by the coupling anisotropy of the array,ix/2iy . Indeed, for
ix � iy , in order to keep the currents within reasonable limits, the horizontal phases must
be small; their time derivatives (φ̈x, φ̇x) thus become negligible, and conditions (a) and (b)
are fulfilled.

Thus the discrete sine–Gordon model, which describes systems of non-linear oscillators
linearly coupled along thex-direction, is equivalent to the ‘array formalism’ in the limit of
highly anisotropic JJ ladders.

It may also be of interest that if, in equation (30), one does not neglect all of the
combined space and time derivatives, a term formally identical to the∂2φ̇/∂x2 present in
equation (23) is obtained. Their physical meanings, however, do not coincide.

Let us now consider the Frenkel–Kontorova (FK) model. For a recent review on this
model, see reference [34]. The FK model is used to describe systems composed of a set
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of particles, interacting through a linear force, placed in a periodic potential; see figure 3,
where, as an example, the 1D case is shown. The Hamiltonian is

H =
∑
i,j

{V (ui)+ U(1uij )} =
∑
i,j

{
K

(2π)2
[1− cos(2πui)] + 1

2
(1uij )

2

}
(32)

whereu is the position of theith particle and the sum overj is over first-nearest neighbours;
K gives the amplitude of the periodic potential. The FK model applies to systems of particles
whose number is not constrained to be equal to the number of potential minima; it can be
either larger or smaller. In order to apply the FK model to the case of the JJ ladder we have
to identify the positions of the particles with the gauge-invariant phases of the JJs lying along
the y-direction,φi;y . As a consequence, the number of minima of the periodic potential is
fixed and equal to the number ofφi;y minus one. If one also adds a dissipative and a kinetic
term, the FK model can be straightforwardly mapped onto the discrete sine–Gordon one.

2.5. ‘Particle’ versus phase dynamics

In the introduction we pointed out the strong correlation between the operational mode of
cryodevices based on JJAs and the dynamics of vortices. We have shown that a complete
description of the JJA dynamics can be given in terms of the gauge-invariant phases. To
conclude this section and, also, the part of the review devoted to the ‘JJ array formalism’, we
would like to discuss the relationship that exists between the vortex and phase descriptions
of JJA dynamics.

In a very general manner, a vortex can be treated as a particle [38, 39] that, under the
action of a certain potential,V (x), is forced to move in a viscous medium. Periodically it
has to overcome energy barriers related to the links encountered along its trajectory.

When we consider the dynamics of a single vortex, the potentialV (x) can be identified
with its Gibbs energy,U(x). This latter can be decomposed into six terms [35, 36]: the core
energyUc = π2/2, defined as half the energy needed to create a vortex–antivortex pair;
the energy of a vortex in the absence of magnetic fields and external currents,U0(x); the
energies due to the interactions with the external field and with the bias current,Uf (x) and
Ui(x); the term that takes into account the periodicity of the array,Upot (x); andUmag(x),
the term due to the screening currents. Strictly speaking,U depends also on the vertical
coordinate,y. Here, in order to simplify the discussion, we assume that the vortex moves
along the central row of the array(y = 0). The analytic expressions forUi(x), Uf (x),
Upot (x) andUmag(x) in terms ofh̄Ic/(2e), with x normalized toa, are given by

Ui(x) = −2π i

(
x + L

2

)
(33)

Uf (x) = −π
2L2

2
f

(
1− 4

(
x

L

)2)
(34)

Upot (x) = −1

2
EB cos(2πx). (35)

Umag(x) = 1

2
(ilink)

T 1

4πλ⊥
ff ilink = 1

2
aT 4πλ⊥ff −1a. (36)

where:L is the array dimension in the direction perpendicular to the flow of the bias current;
the coordinates are normalized to the cell dimensiona; andEB is the energy barrier that
the vortex must overcome to move from one cell to the next one. We fixed the origin of
the coordinates,x = 0, at the central column of the array.
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As far asU0(x) is concerned, its expression for finite samples andλ⊥ = ∞ is

U0(x) = π ln

(
2L

π
cos

(
πx

L

))
. (37)

The modification ofU0(x) for finite value ofλ⊥ [36] is discussed in the next section.
Given the above expression, the equation of motion for the vortex can be written in the

following way:

Mvlaẍ = −EJ
la

dU

dx
− ηlaẋ ⇒ Mvlaẍ + ηlaẋ + EJ

la

(
πEB sin(2πx)− 2π i + 4π2f x

+ dU0

dx
+ dUmagn

dx

)
= 0 (38)

whereη is the coefficient of viscosity. The equation of motion of the particle (vortex), thus,
resembles very much that of the phase of a single JJ subjected to a washboard potential.

It is natural to associate the kinetic term(1/2)C
∑

ij V
2
ij with (1/2)Mvẋ

2. In zero
magnetic field and in the no-screening approximation, the phase profile of the phases around
a vortex is given by [37]φ = arctan[(yi−y0)/(xi−x0)]. In the quasi-static limit one obtains
[23] Vij = (80/2π)(ẋ/ la)(φi − φj ) and, by summing over the phases, one arrives at, in
agreement with reference [39], the following mass expression:

Mv = 80
2C

2l2a
. (39)

On the other hand, the power dissipated by the moving vortex is equal to the sum of the
power dissipated in all of the links of the array,ηu2 =∑ij Vij

2/Rij . η can be expressed in
terms of the effective shunt resistancere (i.e. the equivalent resistance of the whole circuit
between two sitesi andj ) [40]:

η = 80
2

2 l2are
. (40)

Now, if in equation (38) one makes the substitution 2πx → φ, one obtains, in the limit
of very large samples (L→∞), the following expression:

80
2

2π2

C

2
φ̈ + 80

2

2π2

1

2re
φ̇ + EJ (EB sinφ − 2i) = 0 (41)

which shows the equivalence between phase and ‘particle’ dynamics in the limit of large
samples and forf → 0. Indeed, only in these limits areUmagn andU0 independent ofx
in the bulk of the array (i.e. at a distance from the border larger than the vortex size) and
is the ‘arctangent’ expression applicable. From equation (41) it emerges that the depinning
current of the array isid = EB/2. We can define vortex-like quantities analogous to the
junction-like onesβc and ωp =

√
βc/(RC) (the plasma frequency) byβcv = EBβc and

ωpv =
√
EBωp.

Finally, one should note that equation (39) implies no dependence ofM on screening
and, also, a linear dependence ofM onC, while equation (40) implies a constantη if, like
in the Bardeen–Stephens model,re is taken as constant. However, strong deviations from
the behaviour predicted by equation (39) and (40) have been ‘observed’ [41, 47, 36, 42]
in both overdamped and underdamped junctions and these will be discussed in the next
section.
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3. The dynamics of massless vortices

Whenβc < 1 the dynamics is overdamped. In the extreme limit, whenC → 0, the vortices
can be considered massless ‘particles’. An example of arrays made up of superconducting
junctions having a capacitance close to zero is that of SNS arrays; see figure 1. In these
systems the coupling to the environment is very strong, ohmic dissipation dominates the
dynamics and the motion of the vortex isviscous; under the assumption of a Bardeen–
Stephens-like dissipation mechanism, equation (38) reduces to

ηv = −dU/dx. (42)

Since the main goal of this review is to describe single-vortex dynamics (i.e. the kink
dynamics) in discrete systems, we will go through the discussion of the conditions needed
to form and depin a vortex, and the experimental parameters that have the major influence
on the characteristics of the vortex motion (energy barriers, viscosity, bias current etc) and
which, in turn, define the vortex velocity. Particular attention will be paid to pointing out
the effect of screening currents and the sample geometry.

3.1. The pinning potential and depinning current

As is well known, the Kosterlitz–Thouless–Berezinskii (KTB) critical transition [43] sep-
arates the resistive regime of the array (at high temperatures) from its superconductive one
(at low temperatures).

Below the critical temperature (TKTB ≈ EJ/KB), in the absence of an external magnetic
field, vortices are bound in vortex–antivortex pairs. In the absence of energy barriers, such
as in a continuous superconducting film, any non-zero current will break the most weakly
bound pairs. In discrete systems like the arrays, however, each link represents a barrier to
the vortex motion and vortex–antivortex pairs remain bound for bias currents lower than a
given valueId . Indeed, if the energy supplied by the external source in the time unit is not
high enough to break these pairs, the array remains in a superconductive regime: no free
vortices are present and no voltage is measured at the sample edge.Id is usually referred
to as the depinning current.

In the presence of a magnetic field, unpaired vortices are present for temperature lower
thanTKTB ; in fact the field induces a ‘torque’ on the phases,φ, and when it is high enough
(i.e. when the sum of the phase differences along the contour of the sample is>2π ) a
vortex will enter the array in order to minimize the energy of the system. These vortices,
however, although unpaired, are pinned: in order to pass from one cell to the next, they
must overcome the energy barrierEB , also known as the vortex pinning potential. Thus,
the vortex/antivortex remains pinned in a plaquette until it receives enough energy to jump
over the barrier, from either thermal noise (temperatures must be such thatkBT > EB), or
the bias current. WhenT < EB/kB , and the current is lower than thedepinning current,
Id(T ), the vortices are not able to move and no voltage is measured.

Numerical simulations show that in 2D arrays a static configuration with one single
vortex can be stabilized also in the absence of any frustration (internal or external); it is
worthwhile to stress that only in this case are the phases expected to follow the ‘arctangent’
distribution [37]. The same is not true for the ladder, for which a vortex can be stabilized
only for f > 0.12 or λ⊥ < 2 [44]. By taking the energy difference between the case in
which the vortex is centred in a cell and that of a vortex centred on a junction, one can
determine the staticEB [37].

In the no-screening limit,λ⊥ = ∞, it has been found that the static value ofEB , in terms
of EJ , is 0.2 for a 2D square array and 0.043 for a 2D triangular array. These values have
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(a)

(b)

Figure 4. (a) A ladder:EB (static determination) versusλ⊥; in the inset we show the current
distribution around a vortex when it is in cellsi and i − 1. (b) A ladder: EB (dynamic
determination) versus the vortex velocity for different values ofλ⊥; the three curves have been
obtained with different values ofidc: 0.8 (◦); 0.9 (�); 0.95 (•). (c) An anisotropic ladder, 32×2:
EB (dynamic determination) versusEJx/EJy for λ⊥ = 10 for the different values ofidc given
in the key. (d) is as (c) but withλ⊥ = 1.

been worked out for the limit of very large arrays [37] and have been confirmed by numerical
simulations of the dynamics in a small array with periodic boundary conditions [45].

These values ofEB are substantially affected by decreasingλ⊥. For example, atλ⊥ = 1,
EB is greater than 0.4 [17].

It has been noted that finite-size effects may also affect the value ofEB ; it increases
with decreasing array size [46]. This observation for triangular JJAs agrees with calculations
performed for the ladder [47], where it was found to be much higher than in the 2D case.
In fact, in the region of stability of the single-vortex solution, one always findsEB > 0.75
and evenEB ≈ 1.2 for λ⊥ = 0.5; see figure 4.

In extremely anisotropic ladders [32]EB becomes negligible forλ⊥ > 1, a result found
in recent simulations of the dynamical properties of anisotropic ladders, performed as a
function of the coupling anisotropy,EJx/EJy : EB → 0 for λ⊥ > 1 andEJx/EJy > 5. On
the other hand, forλ⊥ 6 1 andEJx/EJy > 10–100,EB saturates and the saturation value
strongly depends onλ⊥ and idc [28].

Experimentally, it is possible to measureEB by measuringId . In fact, in the limit of a
very large array,Id should be equal toEB/2; see equation (41). The measurements on both
2D square and triangular arrays give values somewhat higher than the numerical predictions



Vortex dynamics in classical Josephson junction arrays 1469

(c)

(d)

Figure 4. (Continued)

[22]. The discrepancy may be due to pinning and/or to the finite value ofλ⊥ (the measured
sample had 300 plaquettes to a side, whileλ⊥ = 10).

We do not know of any experimental measurement ofId for a standard overdamped
ladder. Accurate measurements ofId versusλ⊥, on the other hand, have been obtained for
extremely anisotropic (underdamped) ladders subjected to a small,f = 0.2, magnetic field
(see reference [48]) and, also, for a single underdamped ladder as a function off [49].

Finally, we would like to point out thatId can be modulated [48] by the application
of an external magnetic field,f , and that its value increases asId ≈ 0.1[1+ πδf ] in the
presence of ‘moderate’ lattice defects [50];δ gives a measure of the strength with which
defects tend to pin the vortex.

3.2. The vortex velocity and the dynamical determination ofEB

EB depends not only onλ⊥, but also on other factors such as the bias current and the sample
geometry.EB can be determined dynamically from the variation of the array energy,1U(τ),
induced by the vortex motion as a function of the time. By decomposingU(τ) one can
extractUpot [47] and thusEB ; see the previous section.
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(a)

(b)

(c)

Figure 5. (a) Examples of vortex trajectories as functions of the lattice size. (b) Examples of
vortex trajectories as functions ofλ⊥ for a 32× 2 ladder. idc = 0.9. (c) U0(x) for a 32× 32
array, for different values ofλ⊥: 1/2 (O); 1 (�); 2 (4); 32 (×); 64 (◦). For a 32× 32 and a
48× 32 array we also compare a dynamical determination ofU0(x) (solid lines) with the static
one whenλ⊥ = ∞.
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(a)

(b)

Figure 6. (a) A 2D array: the steady-state vortex velocity,v, versusidc for different values of
λ⊥: ∞ (•); 2 (♦); 1 (4); 1/2 (◦). Comparison is made with the results obtained for a ladder
in the absence of inductance (the continuous line). (b) An anisotropic ladder:v versusidc for
different values of the ratioEJx/EJy ; see the key.

It is worth mentioning that to study the single-vortex dynamics one does not need
necessarily to stabilize the vortex by applying a small magnetic field that has the effect of
applying a continuous perturbation to the system. Indeed, the creation of a single vortex
can also be achieved by temporarily breaking a vertical link [51, 52]. For sufficiently
large currents, vortex/antivortex pairs are created at the edge of the defect. By breaking
the rightmost link, it is possible to induce the creation of just one vortex at the border of
the ladder. After its creation, the vortex, subjected to the Lorentz force, moves along the
ladder in an environment free of any perturbation due to external magnetic field. The vortex
velocity can be calculated directly from its trajectory.

The results obtained for a ladder, by applying this procedure, are displayed in figures 5
and 6 and can be summarized as follows.

(a) The vortex moves with a constant velocity; acceleration occurs only when it crosses
the outermost cells. This constant-velocity propagation is observed regardless of what the
values ofidc andλ⊥ are.

(b) The vortex velocity increases almost linearly withidc for idc < 0.75 and superlinearly
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(a)

(b)

Figure 7. Alternate-vortex motion (AVM) imaged by LTSEM. (a) A grey-scale representation
of the voltage image1V (x, y) for a 20× 10 array atT ≈ 5 K. Idc flows horizontally through
the array; white (black) signals at the top indicate incoming vortices (antivortices); on the same
row, black (white) signals at the bottom indicate outgoing vortices (antivortices). (b) AVM:
the time-averaged number of moving vortices (•) and antivortices (�) worked out by means
of numerical simulations. Note that, like for the real experiment, the AVM is disturbed by
edge effects. (c) The variation of the voltage signal expected on the basis of the simple model
described in reference [53]. (d) The measured1V profile on a single row of a 10× 10 array.
(e) The variation of the Josephson energy induced by the moving vortex as detected by numerical
simulations; the vortex has been generated at the 12th plaquette.(a), (c) and (d) are courtesy of
Doderer and co-workers [53].

for higher currents;v decreases withλ⊥.
(c) EB decreases with increasing vortex velocity. Forλ⊥ = ∞, EB(v) follows a simple

exponential dependence,EB = α exp(−βv) whereα ≈ 2.5 andβ ≈ 2π . For a finiteλ⊥,
EB(v) does not follow any simple functional behaviour.

(d) As expected, the limiting expression for the 2DU0 is not applicable to the case of
a ladder.

For 2D square arrays the situation is quite different.
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(c) (d)

(e)

Figure 7. (Continued)

(a) The acceleration rate grows with the vertical extent of the array and with decreasing
λ⊥. Uniform linear motion is observed only when the vortex moves in the central zone of
a large array, far from the edges.

(b) In the central zone the vortex velocity increases with the bias current and with the
vertical length of the array, and decreases with decreasingλ⊥.

(c) EB is a decreasing non-trivial function of the vortex velocity.
(d) The expression forU0 valid for λ⊥ = ∞ is modified by screening: the average

value ofU0 decreases withλ⊥ and the spatial dependence ofU0 flattens.
(e) Above a certain value of the bias current (which depends onλ⊥ and on the vertical

size of the array) the annihilation of a vortex (antivortex) at the border of the array induces
the creation of new antivortices (vortices) in the adjacent rows, leading, over time, to the
formation of a new dynamical state: the so-called alternate-vortex motion, AVM.

This state was first described by Lachenmannet al [53] on the basis of their LTSEM
observations, and confirmed in numerical simulations [54]. The AVM—see figure 7—
consists in an ensemble of vortices/antivortices that are reflected up and down by the
even/odd (or vice versa) rows of the array. In LTSEM measurements, by means of a
scanning electron beam, one locally perturbs the sample dynamics and detects an induced
voltage variation,1V (x, y), at the border of the array.1V (x, y) is proportional to the
derivative ofU (see figure 7) and thus to the vortex velocity (more on the basic principles
of the LTSEM imaging is reported in reference [55]). The LTSEM trace of figure 7 confirms
the acceleration of the vortex in the proximity of the array edges. The smoothing of the
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sinusoidal oscillations of the LTSEM signal in the centre of the array has been ascribed
to the variation of the vortex velocity profile induced by the electron beam; however,
since the LTSEM results are average measurements of the dynamical state of the sample,
vortex/antivortex recombinations (which are allowed under certain conditions) may also
contribute.

It is important to note that, provided that the bias current is high enough, the existence
of an initial vortex (or any other symmetry-breaking mechanism—such as screening [56])
is a sufficient condition for the development of AVM [36].

A bridge towards the continuous limit is provided by the study of vortex dynamics in
overdamped anisotropic systems. Up to now only preliminary studies on anisotropic ladders
have been available [28]; their findings can be summarized as follows:

(a) no matter what the value ofEJx/EJy is, the vortices always annihilate at the edge
of the array;

(b) v increases withEJx/EJy and saturates, but only forλ⊥ 6 1; and
(c) for a sufficiently highidc and a sufficiently low anisotropy, dynamical instabilities

are observed.

Many of the above observations find a common explanation in the dependence of the
vortex size onλ⊥ and on the array geometry; see the next section.

3.3. Energy dissipation, the viscous coefficient and the vortex dimension

The value of the viscosity coefficientη can be calculated by measuringv and the dissipated
power,Wdiss = dEdiss/dt ; v can be obtained from the vortex trajectory, andWdiss is just
[82

0/(4π
2)]
∑

ij φ̇
2
ij /Rij . re is not constant but depends onλ⊥ and the array geometry, a

dependence that can be understood by considering the vortex size [47, 36].
In figure 8 we show the spatial distribution of the cell currents, measured in different

situations and for different samples. We can summarize the results as follows: the vortex
size increases with

(a) λ⊥ (see for example the static determination for a ladder);
(b) the vertical size of the array; and
(c) the anisotropy.

In addition, we observe the development of an asymmetry in the vortex profile (i.e. a
higher current density towards the back of the vortex) which is caused by

(a) the superlinear increase ofv with idc;
(b) the vertical extent of the array; and
(c) the coupling anisotropy.

An increase of the vortex velocity, and thus of the equivalent resistance, is always
associated with an increase in the vortex size. This is a quite reasonable result becausere
is defined roughly as the dimension of the sub-array over which the vortex extends. The
largerre, the smaller the damping coefficientη, and the higher the velocity.

In overdamped arrays, thus,η cannot be assumed constant, but depends on the bias
current, on the screening and on the geometry of the array.

Our results are in agreement with those reported in reference [41], where to account
for the dependence ofη on the bias current the following phenomenological law has been
suggested:η = A/(1+ Bẋ) with A = 2.67 andB = 1.80.

A dependence ofη on λ⊥ has been found and discussed also in reference [42], where,
assuming a linearized Josephson current equation, the authors worked out the following
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(a)

(b)

(c)

Figure 8. (a) An 128-cell ladder: the shape of a moving vortex in the cases whereidc = 0.9,
λ⊥ = ∞ (•), idc = 0.5, λ⊥ = ∞ (♦) and idc = 0.9, λ⊥ = 1 (continuous line). The asymmetry
of the distribution is due to the fact that the vortex is in motion (from right to left). (b) An
anisotropic ladder: the shape of a moving vortex as a function ofEJx/EJy ; see the key. (c)
A 2D array: the shape of a moving vortex as a function of the transverse size of the array for
32×Ny arrays (Ny = 2 (•), 4 (4), 8 (♦), 16 (×) and 32(O)).
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relation:

η = 80
2

2l2arn
G(λ⊥)

wherern is the normal junction resistance and

G(λ⊥) ≈ 1− 1

2

√
2

π

1

λ⊥
+ 7+ 3 ln(8πλ2

⊥)
48π

1

λ2
⊥
.

This expression provides a good fit to the data but does not include the well known
dependence ofη on the bias current.

One may note, however, that none of the above expressions take into account the
dependence ofη on the size of the array (i.e. on the size of the vortex) in they-direction.
Further investigations on this subject are still needed.

EB , also, decreases with the vortex size. The fact that a less localized particle should
overcome a lower energy barrier is also a reasonable result: the larger the vortex is, the
smoother its shape becomes; thus the crossing from one cell to the next one requires less
dramatic phase shifts and, thus, a smaller energy.

The dependence of the extent of the vortex on the vertical size of the array also modifies
the profile ofU0(x)—see figure 5—and explains the acceleration to which the vortex is
subjected in the proximity of the borders. On decreasingλ⊥, the vortex becomes more
localized,U0 flattens and the region in which the vortex moves with a constant velocity
enlarges.

It is interesting to note that in the anisotropic ladders, for shortλ⊥ (λ⊥ ≈ 1) the vortex
cannot extend beyond a certain limit and, as a consequence, forJx/Jy > 50–100,v saturates.

Let us now consider the asymmetry of the vortex shape. Such an asymmetry decreases
with λ⊥ and increases withv, becoming more visible whenv starts to increase superlinearly
with idc. It is likely that the asymmetry develops when the transit time of the vortex,la/v,
becomes shorter than a certain characteristic restoring time of the array.

The distortion of the vortex seems to be evidence for a non-canonical dissipation
mechanism. When the vortex moves too fast, the phases have no time to relax; the system
is not able to dissipate all of the injected energy and an amount of energy is stored in the
array in the form of a more or less extended perturbation of the phases (since here we are
dealing with overdamped arrays, it is not obvious that these perturbations would travel).

Such a non-canonical dissipation mechanism may explain the vortex ‘reflection’ and the
development of the AVM in 2D arrays. In fact, at the moment of the vortex annihilation
it may be that the energy stored in the sample is large enough to induce the formation of
new vortices/antivortices that propagate in the opposite direction. If the number of induced
vortices/antivortices becomes larger than the number of annihilated ones, the energy stored
in the array progressively increases and the process continues until the AVM, a steady
dynamical state, is fully developed.

To conclude this section, we would like to point out that experiments intended to study
in detail the true single-vortex dynamics (not the average dynamical state of the array) are
possible [57], but since the measurements are quite ‘delicate’ ones, they would require a
coordination of many groups and resources [58] that, unfortunately, up to now has not been
made possible.
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4. Dynamics of massive vortices: underdamped JJAs

When the junction capacitance is not negligible,βc 6= 0, the vortex acquires a mass.
Whenβc is somewhat greater than unity, the vortex motion enters the underdamped regime.
Usually, information on the average vortex dynamics in underdamped arrays can be obtained
by measuring theI–V characteristics, which provide evidence of the existence of different
dynamical regimes. One can distinguish between:

(i) a low-voltage regime in which one can observezero-field steps[59] when f = 0
(induced by the back-and-forth motion of vortices reflected at the boundaries);flux flow
(induced by the motion of vortices that are continuously injected at one edge and annihilated
at the opposite one) andFiske steps(due to the resonance between the moving vortex and
the waves excited in its wake), whenf 6= 0, in both the linear [69] and non-linear regimes
[59, 63];

(ii) a high-voltage regime where instabilities show up: a whirling mode in extremely
anisotropic ladders (i.e. 1D parallel arrays) and row switching in 2D arrays; the latter are
observed whenf 6= 0 or λ⊥ 6= ∞; and

(iii) a linear branch regime whereV increases linearly withI .

Thanks to numerical simulations, one can investigate the details of the vortex motion in
all of the above regimes. In the following we will give an updated overview of our present
understanding of single-vortex dynamics in underdamped arrays.

Figure 9. The steady-state velocity versusβc in the case of a massive vortex in a 2×32 ladder
for different values ofidc; see the key. The lines indicate the borders between the different
dynamical regions where one observes vortex annihilation, vortex reflection and dynamical
instabilities.

4.1. Vortex depinning, vortex annihilation and vortex reflection

Whenβc takes a value somewhat higher than 1:

(a) theI–V characteristic becomes hysteretic [22]—this observation supports a ‘particle-
like’ description of the vortex dynamics;

(b) the vortex retrapping current is lower than the depinning current, but, due to thermal
fluctuations, the difference is reduced progressively to zero for more and more resistive
samples; and
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(c) the depinning current decreases with increasingβc. In reference [60] it is suggested
that id should decrease as

√
βv,c, a prediction that when compared with the experimental

results of reference [22] shows a reasonable agreement, despite the large spread of the
parameter values (λ⊥ and the geometrical size) of the samples considered.

The vortex motion is influenced by parameters likeβc, idc andλ⊥ also in underdamped
arrays. As an example, in figure 9 we show, for the case of a ladder withλ⊥ = ∞, a v
versusβc plot. The lines separate different dynamical regimes. In the ‘annihilation’ regime
the motion of the vortex turns out to be very similar to that observed in the massless case.
Again v depends onidc but, in addition, in underdamped arraysv decreases withβc and
tends to be independent ofidc for very largeβc.

Annihilation of vortices at the borders is observed also when an external magnetic field
f is switched on. Vortices are continuously generated at one border and annihilate at the
opposite one. As a consequence, a non-zero voltage is measured: this is the so-called flux-
flow regime. The flux-flow resistance,rff , characteristic of this regime, can be shown, under
certain approximations, to be linearly proportional to bothf andre. The linear dependence
of rff on f (up to f ≈ 0.25) has been checked both experimentally [22] and numerically
[41]. To check the proportionality betweenrff and re one has to take into consideration
the fact that, as for the overdamped arrays,re depends on the size of the vortex and thus
cannot be identified straightforwardly with the normal-state resistance of the junctions. An
experimental proof of this is reported in reference [42].

Whenβc is high enough, one observes a transition to a new dynamical regime: that of
‘vortex reflection’ at the borders. At each reflection the vortex/antivortex is reflected into
an antivortex/vortex; note that in underdamped systems we are faced with a true vortex
reflection: the incident and the reflected ‘particle’ move on the same row. The vortex
reflection occurs not only in 2D arrays [61] but also in ladders [28] (where massless vortices
always annihilate at the borders) and in extremely anisotropic ladders [59, 70]. Vortex
reflections may be repeated at each border, being analogous to the ‘soliton’ reflections in
continuous long Josephson junctions, LJJs [15]; in a very similar manner, such reflections
produce a non-zero average voltage, i.e. a zero-field step. In 2D JJAs the zero-field step
seems to be characterized by a relevant non-zero slope [61], but it is likely that in anisotropic
arrays with a shortλ⊥ the zero-field step would flatten. This is a point that has to be checked.

Also, for underdamped arrays we expectη and the vortex mass to depend onλ⊥ and
the vertical extent of the array, i.e. on the vortex size. Some experiments and numerical
checks, although not complete, can be found in reference [42].

Whenβc is of the order of 50 or more andλ⊥ is not lower than 5, the region of the
βc versusidc plot in which one observes vortex reflection splits into two and an additional
vortex annihilation area materializes in between [61]. It is suggested that this latter is caused
by the excitation of additional dissipative modes (see the next section) that interfere with
the vortex motion, slow it down and cause its annihilation.

Preliminary results seem to indicate that no such additional vortex annihilation region
exists in the underdamped ladder, an observation that agrees with the progressive shrinking
of the ‘reflection’ region in 2D arrays with decreasingλ⊥ (at least whenβc takes values as
high as 100) [28]. This point also needs further investigation.

4.2. Dissipation and resonances

In the flux-flow regime it is observed that forβc > 1, re decreases as
√
βc and takes values

even smaller than the normal resistance. In agreement with experimental observations [22],
numerical calculation shows thatηc increases as≈η√βc = 2πEj/a2ωp (a relationship
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Figure 10. The experimentalI–V curve for one vortex trapped in the ring measured at 6.4 K,
where32

j = 2.2 andβc = 61. The solid line shows dV/dI . Inset: the voltage position of the
six steps versus the mode numberm. The curve is a fit to the dispersion relation given by van
der Zantet al. The sample used in the experiment is sketched in figure 3.Courtesy of van der
Zant et al [63].

strictly correct only if v increases linearly withidc); that is, ηc does not depend onre
[60]. These results are not compatible with Bardeen–Stephens-like ohmic dissipation [62]
and suggest the existence of an additional dissipation mechanism [22]. The existence of
this latter also defines the limits of the calculation of the vortex mass, as derived in the
previous section. The cause of the additional dissipation mechanism has been identified as
the excitation of spin waves in the wake of the moving vortex [45, 60]. Such a hypothesis
has been proved correct in numerical simulations either by the direct numerical observation
of current oscillations or by the appearance of resonances in theI–V characteristics in linear
and non-linear regimes (Fiske steps). In particular, these latter have been experimentally
measured in an extremely anisotropic ring (figure 10) [63] and ladder [65, 70], and predicted
by several groups [64, 31, 65] on the basis of discrete sine–Gordon-like equations.

The experimental observations confirm the predicted bending of the acoustic branch at
the edge of the Brillouin zone. It is worth stressing that this is an effect of the discreteness of
the system; in a long Josephson junction, in fact, the acoustic branch has a linear dependence.
Experiments have also shown that the inductive term is quite relevant in determining the
degree of the bending of the acoustic branch. More spectacularly, it has been demonstrated
that, in the linear regime, an optical branch exists when the chain is composed of alternate
junctions having two different critical currents [69].

4.3. Vortex motion in the absence of a driving force: ballistic vortex propagation

In underdamped JJAs, because of their mass, vortices should be able to propagate inertially
when the driving term is switched off [66]: ballistic propagation. Of course the kinetic
energy of the vortex has to be larger than the potential energy, which implies that
vmin >

√
Eb laωp/π . On the other hand, the vortex velocity also has an upper bound

because it must not excite spin waves,vmax ≈ 0.1laωp, as deduced from a continuum
model [60]. Up to now there has been just one experiment, on 2D triangular arrays, for
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which ballistic motion has been reported [67]. In this experiment, vortices were accelerated
in one JJA and then detected in a second, separated from the first by a narrow rectangular
JJA channel. The second array was not biased:Idc = 0. In the absence of an applied
current, and in the approximation of a negligible dU/dx, the equation of motion of the
‘particle’ becomes simplyMv̇+ηv = 0. From this equation one can deduce an exponential
decrease ofv = v0 exp(−ηt/M) and a mean free path of the order ofv0RC, much larger
than that characteristic of bulk superconductors for which the time constant is very short,
10−17 s [23]. For the experiment, it was estimated thatv = 0.016laωp, a value somewhat
lower than what was expected to be needed to overcome the pinning barrier, 0.043Ej ; it
should have required a peak velocity of≈0.07laωp. Nevertheless, vortices may travel much
faster than had been estimated, reference [67], at about 2× 109 lattice spacings per second,
so this may not be a problem. The results suggest that ballistic motion is possible just above
vortex depinning. Recent results obtained by Fazioet al imply a stiffer spin-wave spectrum
and a larger window for ballistic motion, up tovmax ≈ 0.5 laωp [68]. However, to date
there are no experimental data that support ballistic propagation of vortices at so high a
velocity, in homogeneous 2D arrays. Numerical evidence for ballistic motion in anisotropic
ladders has been obtained for when the anisotropy is high enough to yield a small damping
coefficient and vortex mass [33]. Since the effect of screening on the ballistic motion has
not yet been investigated, we may conclude that this point deserves further investigation.

4.4. Dynamical instabilities and row switching

If we are in the dynamical regime characterized by vortex reflection and we increaseβc
further, the vortex dynamics becomes unstable. In numerical simulations we have observed
such instabilities in ladders and in more extended 2D arrays. Beyond a certain value ofβc,
the vortex reflection region disappears and one passes directly from the vortex annihilation
region to the instability region. The critical value ofβc required for this to happen seems
to decrease with increase of the vertical size of the array. In 2D JJAs, instabilities are
known to induce what it is called a row switch. Since we do not see how this concept can
be straightforwardly applied to ladders, in the rest of this section we restrict ourselves to
considering instabilities in the 2D JJAs. From the results reported in the literature [71, 26],
in 2D arrays row switching is observed only whenf 6= 0, or if f = 0 for λ⊥ 6= ∞, and
what occurs is a switch to the normal state of one or more entire rows of the array; as a
consequence a voltage jump as high asidcren/Ny is observed, wheren is the number of
switched rows.

Row-switching phenomena have also been imaged and confirmed by LTSEM (see
figure 11) [53].

The mechanism of the row switch has not yet been described quantitatively. On a
qualitative basis it has been suggested [60] that a row switch occurs because single junctions
are in the metastable part of the zero-voltage branch of theirI–V characteristics and an
external perturbation, like a passing voltage, can initiate a transition to the non-zero voltage
branch.

An interesting feature of the row-switch regime is the high degree of coupling between
the junctions of the array, leading to the formation of coherent dynamical states in which
‘vortices’ move in columns. A Fourier analysis of the voltage signal in the row-switch
regime shows very sharp peaks and supports the assertion of coherence of this dynamical
state [26]. Such a coherent state may be disturbed and even destroyed by a finite value of
λ⊥. No experimental confirmation of these numerical results has been obtained up to now.
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(a) (b)

Figure 11. (a) A grey-scale representation of the voltage image1V (x, y) of an underdamped
10× 10 array at≈5 K. The dark area indicates a negative electron-beam-induced1V (x, y).
Five rows are in the voltage state. (b) The current–voltage characteristic of the array; the
LTSEM image of the row-switch state was taken at the fifth step.Courtesy of Doderer and
co-workers [53].

4.5. Comparison with continuous systems

A long and stacked Josephson junction can be considered as the continuous counterpart of
extremely anisotropic JJA arrays. Long Josephson junctions are characterized by several
prominent dynamic features in theI–V characteristics [16]:

(a) zero-field steps;
(b) a flux-flow regime; and
(c) Fiske steps.

We have already seen that in discrete arrays one can observe very similar features.
Nevertheless, there are some differences. In a discrete system there is always a finite
barrier that the vortex has to overcome to move from one plaquette to the next; moreover
the vortex excites spin waves in its wake, the dispersion laws are no longer linear and,
under certain conditions, optical branches are detectable (see figure 12).

In addition to the above-mentioned characteristics, in stacked long Josephson junctions
one also observes:

(d) resonance branches corresponding to different vortex propagation states characterized
by different velocities. As an example, with two stacked junctions one observes vortices
that propagate along the junctions being locked in phase or out of phase [72].

Some experiments have been performed on extremely anisotropic two-row arrays (also
called inductively coupled arrays) and, as for the continuous case, in-phase and out-of-phase
vortex propagation modes characterized by two different velocities have been observed
[48, 73]. Simulations of bidimensional JJAs have been reported in reference [74]. Many
more experiments and simulations relevant to this subject are expected in the near future.

5. Final remarks and future perspectives

This review has we hope given a flavour of the extreme liveliness of the research on vortex
dynamics in Josephson junction arrays and, also, of the still numerous open questions,
remaining in spite of the huge efforts that have been made during the last five to six years.
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Figure 12. (a) The dispersion relation for the modes of the 1D array measured at 8.5 K in
the linear regime. (b) Numerical simulations. Note the bending of the dispersion law at the
border of the Brillouin zone and the observation of an optical branch.Courtesy of van der Zant
et al [69].

Basically, we first described the up-to-date theoretical framework needed to interpret and
simulate the experimental results. The Lagrangian was written out for the gauge-invariant
phases to show that these are the relevant dynamical variables. From the Lagrangian, then,
we derived the equation of motion and showed that it contains both the current-conservation
law for the knots and the Biot–Savart equation. This latter is the equation that makes the
difference between theXY -formalism and the ‘discrete JJ’ one, allowing one to account
in a complete manner for the mutual inductance of the branch currents and to introduce a
finite penetration depth. Starting from this description one can extend the model to include
granular superconductors and anisotropic arrays. Also, comparison with other discrete
models, such as the discrete sine–Gordon and Frenkel–Kontorova models, becomes easy.
Next, we pointed out how, under certain conditions, the phase dynamics can be mapped
onto the dynamics of a massive particle that moves in a viscous medium while it is subjected
to a periodic potential. This latter is a simple but sometimes very helpful model, providing
one with an intuitive feel for the physics.

Once the theoretical bases had been established we reviewed various aspects of the
single-vortex dynamics in JJAs, starting with the case of the massless vortices. We first
discussed the vortex pinning introduced by the discreteness of the array and showed that
the value of the static barrier to the cell-to-cell vortex transfer can be strongly influenced
by screening. This latter influences, as well as the dynamical value of the barrier, that of
the vortex velocity (the bias current) and, thus, that of the viscosity coefficient. Last, but
more importantly, screening influences the vortex size, the key dynamical parameter, which
strongly depends also on the vertical extent of the array and on the Josephson coupling
asymmetry.
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In addition to the size of the vortex, its asymmetric profile may also have a certain
relevance. We believe that asymmetry is the indicator of a non-conventional dissipation
mechanism that leads to the accumulation of energy in the array and to the development
of a vortex cascade and, in turn, to the alternate-vortex motion. Some points still remain
unclear—for example, the definition of a relaxation time for a JJA perturbed by a massless
vortex—and many more numerical simulations are needed to elucidate the effect of a
magnetic field, the detail of vortex formation and annihilation, the vortex–vortex interaction
and so on. Also looking very interesting and promising is the investigation of the vortex
dynamics in anisotropic JJAs. On the experimental side it is important to point out that only
the average effects of the vortex dynamics have been studied. The study of single-vortex
dynamics in ‘real time’ [58] looks to be a challenging issue for the future.

No less appealing, as has been shown, is the study of massive vortex dynamics.
The pinning energy depends on the vortex mass and new dynamical regimes have to be
considered. The ‘launched’ vortices do not always annihilate at the edge of the JJA, but,
depending on its mass, one can observe vortex reflections and dynamical instabilities. On
increasing the vortex energy (i.e. the velocity and/or mass), additional dissipation mech-
anisms are activated. If these latter are not too intense, ballistic vortex propagation can be
observed. Here again, as already discussed in the text, many aspects of the vortex dynamics
need further and deeper investigation.

Extremely anisotropic JJAs (inductively coupled JJ arrays) have been shown to be very
useful as regards comparing the dynamical properties of discrete arrays with those of their
continuous counterparts: long and stacked Josephson junctions. For example, very elegant
and efficient investigations of the discrete plasma spectrum have been performed and the
shapes of the dispersion curves have been shown to be influenced by the screening effect.
The field of research concerned with inductively coupled arrays is quite new and seems
promising.

Vortex dynamics in JJAs is thus a field in rapid and intensive evolution, whose limits
extend well beyond the ‘borders’ that we have imposed in the present review to include
other aspects of the ‘classical’ vortex dynamics (such as locking, chaos and turbulence) and,
also, many more subjects related to the quantum nature of the vortices [75].
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Jośe J V 1997 private communication
and, also, to explain the linear behaviour of theI–V characteristic of a capacitive array once the sample has

switched to the normal state.
[26] Phillips J R, van der Zant H S J andOrlando T P 1994Phys. Rev.B 50 9380
[27] Lucheroni C 1997Phys. Rev.B 55 6559
[28] Ciria J C and Giovannella C 1998 to be published
[29] Giovannella C, Ritort F and Giannelli A 1995Europhys. Lett.29 419

Ciria J C and Giovannella C 1996J. Phys.: Condens. Matter.8 3057
[30] Davidson A, Dueholm B, Kryger B and Pedersen N F 1985Phys. Rev. Lett.55 2059
[31] Peyrard M and Kruskal M D 1984 PhysicaD 14 88
[32] Bock R D, Phillips J R, van der Zant H S J andOrlando T P 1994Phys. Rev.B 49 10 009
[33] Ryu S, Yu W and Stroud D 1996 unpublished
[34] Floria L M and Mazo J J 1996Adv. Phys.45 505
[35] van der Zant H J S,Rijken H A and Mooij J E 1983J. Low Temp. Phys.27 150
[36] Ciria J C and Giovannella C 1997J. Phys.: Condens. Matter9 2571
[37] Lobb C J, Abraham D W and Tinkham M 1983Phys. Rev.B 27 150
[38] Larkin A I, Ovchinnikov Yu N and Schmid A 1988PhysicaB 152 266
[39] Eckern U and Schmid A 1989Phys. Rev.B 39 6441
[40] Rzchowski M, Benz S, Tinkham M and Lobb C J 1990Phys. Rev.B 42 2041
[41] Hagenaars, Tiesinga P H E, vanHimbergen J E and Jośe J V 1994Phys. Rev.B 50 1143
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