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Abstract. This review deals with the recent progress achieved in the understanding of vortex
dynamics in discrete arrays of classical Josephson junctions, JJAs. We first give an up-to-date
overview of the discrete models currently used to describe the physics of JJAs: the ‘JJ array
formalism’, the discretized version of the sine-Gordon equation and the Frenkel-Kontorova
model. Special emphasis is put on the recent reformulation of the screening term that makes
use of the full-inductance matrix. The relationship between the phase and the vortex—particle
dynamics is also discussed. An overview of the ‘state of the art’ in the understanding of the
single-vortex dynamics in overdamped JJAs follows; the dependence of the motion of the vortex
on its size (i.e. on the screening strength, the sample geometry and the coupling anisotropy,
E;/E;y) and, also, on the bias current is pointed out and discussed. A peculiar phenomenon,
alternate-vortex motion, is also briefly illustrated. Subsequently, we review the single-vortex
dynamics in underdamped JJAs. A short description of the conditions that lead to the observation
of anomalous dissipation, vortex reflection, ballistic vortex motion, resonances, instabilities and
row switching is given. To conclude, we discuss open problems and future perspectives of the
research on JJAs.

1. Introduction

Arrays of Josephson junctions (JJAS), see figure 1, constitute one of the most intriguing
examples of coupled non-linear oscillators [1, 2]. The diffuse interest in such complex
systems is due not only to the richness of their physics (the macroscopic quantum
phenomena, phase transitions, locking and chaos etc) which finds counterparts in many
physical and biological systems [3], but also to the possibility of using JJAs in the
production of useful cryoelectronic devices with unique properties and extremely low power
consumption: Josephson voltage standards [4], fast logic elements [5], neural networks
[6] and photofluxonic detectors [7, 8] (based on overdamped JJAs), oscillators and other
hyperfrequency cryodevices (based, instead, on underdamped JJAS) [9] and vortex-flow
transistors [10].

During the last five to ten years the number of publications devoted to the JJAs has
continuously increased. The reasons for this are as follows.

(a) An improved reliability of the lithographic and fabrication processdsch allows a
much higher degree of integration than before.

Nowadays, cryoelectronics circuits may contain up to some hundreds of Josephson
junctions, whose physical parameters are identical within an acceptable dispersion; the
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Figure 1. Examples of JJ arrays: (a) a 2D square network; (b) a 2D triangular network; (c) a
JJ ladder (one JJ is placed on each branch of the array and each grain is characterized by a
single phased;); (d) 2D granular superconductors: the grains are now extended and the phase
changes along the grain. Tlges are the gauge-invariant phase variations along the junction (J)
and along the grain (G)}p; = 6; —0; — A;;. A;; is the contribution due to the vector potential

and it is defined in the text. (e) and (f) are schematic representations of, respectively, a SNS and
a SIS Josephson junction with their equivalent electric circuits (see the text for more details).
The external magnetic field?, applied perpendicularly to the samples generates a frustration

f = BS/®g whereS is the surface of the plaquette.

spread of such parameters is usually kept within a few per cent of their average values.
Reliable fabrication processes make it possible to compare, with a certain degree of
confidence, experimental results obtained for real systems and computer simulations of
model systems.

(b) The recent availability of inexpensive personal workstations

Simulations of large discrete systems, like the JJAs, based on realistic models, have
been quite impossible for a long time (they were too expensive and time consuming);



Vortex dynamics in classical Josephson junction arrays 1455

now, on the other hand, a few thousands of dollars are sufficient to buy a computer
powerful enough to allow the simulation of both the static and the dynamical properties

of JJAs with geometrical dimensions comparable to those of the real systems employed in
experiments. Numerical simulations are essential if one wishes to study the dynamics of
systems composed of many coupled non-linear oscillators, like the JJAs, for which there do
not exist analytical descriptions and for which the interpretation of the experimental data is
not at all straightforward.

(c) The discovery of higlf: superconductorswvhich renewed the interest in super-
conducting cryoelectronics—with the hope of producing devices able to operate at liquid
nitrogen temperatures.

The fabrication of reliable higliz. superconducting junctions is still made difficult by
their intrinsic short coherence length which imposes the requirement of controlling the
junction parameters on a scale much shorter than is currently possible with up-to-date
fabrication technologies; JJAs, consequently, have been employed to model and study the
effect of the ‘disorder’ in the higlT;. superconducting devices [11]. In addition, most of the
high-T. superconductors are materials in which the bidimensional superconducting layers
seem to be coupled along theaxis through the Josephson effect. Hifjhmaterials, thus,
can be likened to stacks of extended Josephson junctions [12] and can be modelled, again,
by means of JJAs, although only anisotropic ones.

All of the interesting applications of JJAs in cryoelectronics rely on the formation and
on the displacement of special quasi-solitonic excitations of the gauge-invariant phase: the
so-called vortices/antivortices. A vortex obeys the fluxoid quantization rule: the sum of
the gauge-invariant phase circulation along any path enclosing the vortex plus the magnetic
flux through the surface defined by this path has to be alwaysvgheren is an integer;
see figure 2.
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Figure 2. An example of topological excitations of the JJA phase configuration of a ladder,
32 x 2: the 2r phase variation«) and the associated voltage peak (The topological excit-
ations are travelling from left to right.

Vortex—antivortex couples develop whenever a perturbation breaks the symmetry of
the flowing current on a local scale and acts for long enough to transfer into the system
the needed formation energy. As an example, in biased samples, vortices form because
of current spikes, geometrical defects, an inhomogeneous spatial distribution of the bias
current, a perturbation caused by an incoming photon and so on [8].

Why are vortices/antivortices so relevant for cryoelectronic devices?
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In overdamped JJAs, as we will show later, vortices can be likened to massless particles;
their displacement can be used to transfer elemental bits of information. Indeed, by
controlling the vortex formation, transmission, trapping and annihilation one can build very
fast digital circuits (having clocks operating at some hundreds of GHz) and, it is hoped,
very fast computer facilities [5].

In underdamped JJ systems, on the other hand, the vortices acquire a mass (i.e. a
kinetic contribution to their energy) and can be reflected at the border of the sample. One
can use the periodic reflections of the vortices to fabricate oscillators able to emit and detect
electromagnetic radiation in the hyperfrequency domain. Unfortunately, the electromagnetic
power emitted by a single oscillator (vortex/antivortex) is quite low (of the order of a
microwatt) as, also, is its output impedance (a few ohms) [9].

In JJAs, however, under certain experimental conditions, several vortices may couple
with each other giving rise to a coherent motion (a dynamical locked state) that, in principle,
should lead to an electromagnetic emission whose power is proportion&, twhereN is
the number of oscillators involved in the process. In addition, due to the array geometry,
the output impedance of the devices is also expected to increase up to values reasonable
enough to allow their integration in hybrid circuits.

At this point we have, we hope, convinced the reader that a careful investigation of
vortex dynamics is essential if one is to achieve a correct understanding of the JJA physics
and, as a consequence, to describe in a correct manner the operational mode of the cryo-
devices based on JJAs.

In the past, single-vortex dynamics has been the subject of a number of reviews; all of
them, however, dealt with systems that represent the continuous counterpart of the JJAs:
the long and the stacked Josephson junctions [13-16]. The same level of attention has not
been given to the description of the vortex dynamics developed within the framework of
‘JJ array formalism’. As far as we are aware, there are many interesting articles available
describing research on the subject, but no reviews. In view of this, perhaps it is the right
time to make an effort to give a review of this area.

Further motivation for writing this article was provided by the need to review the
important progress recently made in the understanding of the JJA physics related to the
reformulation of the ‘JJ array formalism’ to include a full-screening term—a reformulation
that was first implemented by Philligg al [17] and then, in an independent way, by other
groups [18, 19].

Now, as a result of the introduction of the full-inductance matrix, the mutual inductance
of the currents flowing in the array (the Biot—Savart law) can be worked out in a precise
manner and it is no longer introduced as ahhocmean-field quantity [20]. As regards
the XY-model, one has to consider the development of the ‘JJ array formalism’ to include
the full-inductance matrix as a decisive step towards a more realistic description of the JJA
physics: it allowed for the introduction of a tunable and finite penetration depth (

The review is organized as follows.

The first part of the next section introduces the reader to the ‘JJ array formalism’ as
currently used, while the second part of the section will be dedicated to comparing the ‘JJ
array formalism’ with other discrete models such as the sine—Gordon and Frenkel-Kontorova
ones and to discussing the equivalence between the phase and the vortex formulation of the
JJA dynamics.

Sections 3 and 4 then deal with single-vortex dynamics, respectively in overdamped and
underdamped JJAs. Experiments and numerical simulations are compared and discussed.

Finally, in the last section, we briefly point out open problems and future lines of
development.
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2. The discrete ‘JJ array formalism’

2.1. The discrete JJA Lagrangian

The Lagrangian of a Josephson junction array subjected to the action of an external forcing
term (a bias current applied along thelirection) and to a local random force (the thermal
noise) is given by

L= EJ{Z(COS(ﬁij -D+ % Zfﬁi + Xk;iext;i[(DG)ilD]i:kl(f’kl - Z;ijfﬁij
L 1 L

i

1
-5 Y (R +21f),A, %5 (Rp + 27 f),
p.q

— Y (Rp+2f),(A™'A - (RRT)—lRM)p,iiex,;i}. 1)
p.i

Here,¢;; = 6; —0; — a;; is the gauge-invariant phase difference along the junctiom; is

the phase of the pseudo-wavefunction describing the state of grain| exp(io;), where

|W;|2 = ng (n, is the density of the superconducting pairs &g is constant for all of the

grains: |¥;| = |W]). a;; is related to the vector potentiad through

2 J
aij=§f A - dx.
0Ji

i, j stand for nearest-neighbour points amauns over the plaquettes of the array.and
A will be defined further on in this section.

The physical meaning of operatofs, D and G is simple to understand. As is well
known, any vector field can be expressed as the sum of a solenoidal field plus an irrotational
one (with vanishing divergence and curl, respectively). We call the operator that, applied
to any field, selects its solenoidal (irrotational) componnt(P,;). These operators can
be expressed aB; = G(DG)~*D (whereG and D are discrete versions of the operator
gradient and divergence) am®l = RT(RR")"1R (with R the discrete rotational operator).

Of course,RG =0, PP, =0, P.P, = P,, P,P, = P,;, P, + P, = 1. We have chosen the
London gaugeV - A = 0), so(DG) D¢ =6, (Pi)ij = 6; — 0; and(Pr¢)ij = —ayj.

The¢;; are connected to the normalized junction voltage drep (2e/h)V measurable
at the junction through the Josephson relatiq'm:: 2 v.

E; = ®ol./27 is the junction coupling energy andly is the elemental quantum of
flux. (®o = h/2e = 2.068x 10°1° V s.) A;;.is is the full-inductance matrix, normalized to
®o/(211,). B = 2¢I.R?C /R is the McCumber parameter wheReand C are respectively
a characteristic shunt resistance and a capacitance (see further on for their definiison).

a thermally induced noise current. The currents are normalized to the critical current of the
junction, I..
2¢R,I,
T=—-—t
h
is the normalized time.

Equation (1) has been written using the conjugate pair of varighbsdé to stress that
the gauge-invariant phases are the relevant dynamical variables (the equivalence between
the phase and the vortex dynamics is discussed further on).

Let us now examine one by one the terms of the Lagrangian. The first one accounts for
the energy stored in the Josephson junctions. The second term represents the energy stored
in the electric field; it depends both on the capacitance of each single island with respect to
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the ground,C;, and on the capacitance between the nearest-neighbour is@ndse. the
capacitance of the junctions. Sincg; is always much larger tha@; [22], in the rest of
this review the contribution due to the self-capacitance will be neglected.

The third and fourth terms are related to the work done on the system by the external
current generator (either dc or ac) and by a white-noise current (that takes into account the
thermal noise generated by the resistors). Usually this latter is chosen such that

(i;j(r)) =0
and
2kgT

(i;j(r + 0)in(r)) = 3(70)3ij;ki-

tj
The last terms of equation (1) represent, as stated in the introduction, the main difference
between theXY-formalism, wherexr, is always taken equal too [21], and the ‘JJ array
formalism’, wherei; can assume finite values. It is related to the energy stored in the
magnetic field due to the mutual inductance of branches of the array. The normalized
inductance matrix £) connects the induced magnetic flux through the plaquettes to the
mesh currents defined on each cell (for a definition of mesh current, see figure 1):

Pindip = Y Apgiy. @)
p.q

The vector potential includes the contributions from both the external and the internal
magnetic fields:

27 7
aij = _/ (Aij;ext + Aij;im) - dr. (3)
Do J;
The flux of the external magnetic field through plaqueites
21
(Raext)p = Zﬂfp = — / B, - ds (4)
Do J,

where S is normal to the surface of the plaquetf,andB,,, =V x A,,,.
Thea;;.;; are due to the currents circulating in the arrgy) [19]:

1
ijiine = ) ——Tfijui S)
a], t ;47T}LL j,k]lk] ( )
wherei, is the normalized effective penetration depth of the array [17]:
1 &
S 6
LT o nolcl, ©)

with [, the lattice spacing of the array.;ff; is a form factor matrix related to the geometry
of the array. In most cases all of the non-diagonal elements of the ff matrix can be assumed
to depend only on the relative distance between the links of the areay;; —ry, and not
on the shape of the Josephson junction. The self-term, on the other hand, diverges when
r — 0 and this forces us to consider the particular geometry of the junction in order to
introduce the appropriate geometrical cut-off [19].

The link currents are related to the mesh currents throiugh = R épesn + Miey.
M;;.« = 1if k is a site belonging to the first row, anig is a vertical link aligned with it;
otherwise,M;;., = 0. The Biot-Savart equation (5) can be expressed as

Dipg = Aimesh + Aiext = imesh = A_l(qund - Aiext) (7)
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where the matrixA is defined as
1

A = RffM 8
47T)\.L ( )
and A can be easily related to ff:
A= RffRT. 9
47TA,L ( )

We stress again that by means of equation (5) the current contribution to the local vector
potential,a;;.;», Can be worked out exactly for each link and is no longer introduced as a
mean-field quantity. This difference may be quite important, especially for finite 2D systems
with relatively small dimensions, such as the ones commonly used in experiments.

Since in this review we deal with arrays for which charging effects and the fluctuations
of the amplitude of the superconducting order parameter are negligible, we have dropped
Lagrangian terms like-hn, P,6; and—(n, —ii)q P, V; that are related to the displacement of
charges#; is the density of the superfluid, is the background charge density avids the
scalar potential); by applying Lagrangian equations to these terms, the Josephson voltage
relationship can be obtained [23].

2.2. The equation of motion

The Euler-Lagrange equations for our system are

L L
2(3_,)_8_+£:0 "
dr \ 0y Apij  O¢i;
whereF is Rayleigh’s function giving the ohmic dissipation
y ,
]: = E Z¢ij(s)aij;kl¢kl(s). (11)

ijikl
« is an operator defined as
a=G(DG) Y YDG)*D+ Rt (12)

wherer and R are diagonal operators whose elements are, respectiRelfhe resistance

of the superconducting islandwith respect to the ground) amg; (the resistance between

the ith and thejth islands, i.e. the junction resistance due to the tunnelling of the quasi-
particles for SIS junctions and the normal-state resistance for the SNS junctions). In general
one neglects the self-resistance (the resistive shunted model, RSJ) and, also, the coupling
between the tunnelling quasi-particles and the environment; one should note, however, that
the island resistance with respect to the ground is the basic dissipative term in the TDGL
model [25], while the coupling to the environment may lead to a redefinitio® offor
junctions with a normal resistance of the order of IDQthe environment impedance) [24].
Moreover, almost always one assumes a constgntneglecting the dependence Bf; on

¢; basically, this is equivalent to shunting the junction with an external resist@nsmaller

than the junction resistance. To take account of the dependerkg(¢h = 1/G(¢) on ¢

one can use the following expression [26]:

G(V) =G+ (1—- Gyl —tanhK (1 —-V/V,)]/2

whereG,, is the ratio of the sub-gap conductance to the normal-state conduckirisea
constant and, = 4I.R, /x is the gap voltage.

Another common approximation is that of neglecting the spatial distributions atthe
that may result from the limits of the fabrication process.



1460 J C Ciria and C Giovannella

Thus, neglectingk; and takingR;; as a constant, from equation (10) one obtains a set
of equations whose matrix form, in normalized units, is

Bed + ¢ + i SiNG + & — [G(DG) iers — P Mions
+ RTAYRp+27f) + RTA AG,,, = 0. (13)
By considering the irrotational and solenoidal components of equation (13) one obtains

the two sets of Kirchhoff and the Biot—Savart equations. In fact, by taking the divergence
of equation (13) one has

Ded+  + dep SN+ D) = Diiak = f (14)
where thei;,;, are the currents flowing along the links. This vector equation reads, for each
nodei,

d2¢i j d¢i‘ . . bt .
Zﬂc d-EZj + Z d_tj + Zlc;ij sin(¢;;) + Zlij — et = 0. (15)
J J J J

On the other hand, by realizing th&(DG) Yi., = G(DG) *Dijink = Paiiink, and
using 4ipk = R 4mesn + Miew, Pr + P; = 1 and P;RT = 0, we can group the first six
terms in equation (13) to give

ilink - G(DG)iliext - PrMiext = RTimesh- (16)
Applying (RRT)~1R to (13), one obtains the Biot—Savart equation (7).

It is worthwhile stressing that, since the nodes of the array are represented by point
grains, fluxoid quantization is automatically fulfilled:

D i+ 21f + Pina = 20,7, (17)
ijep

>_ije, Stands for the anticlockwise sum along the links of shplaquette and the;
are restricted to varying in the intervél-n, 7]. ® = 27 f + ®;,, is the total flux through
the cell.

It should be noted that in a recent paper Lucheroni [27] has shown that the dynamics
of the mesh currents and that of the phases of the superconducting nodes can be separated
by making the following substitution for the gauge-invariant phase: D0 + (R.) Tinesn
(a fact that implies the existence of two types of dynamics having different timescales, as
clearly pointed out in reference [18]); if just the self-inductance of the cells is considered,
then R; can be factorized a& R, where L is the self-inductance. As a consequence a
reduction in the number of coupled differential equations is obtained.

2.3. The JJA formalism and the granular superconductors

The ‘JJ array formalism’ and its Lagrangian allow us also to describe the case of weakly
coupled granular superconductors for which the phases are not uniform inside each grain.
To do this one should consider the intragranular currents and phase shifts. A way of
implementing this is to describe each superconducting site as a plaquette; a supercurrent,
linear in the phase, flows within it. Thus, we must generalize the gauge-invariant phases,
currents and fluxes, to add new variables corresponding to the superconducting-grain links
and cells:

¢ — ¢ =10, ¢s)
> d={d,, Dy
Link = Uink = {link;J» Uink: S}

Umesh — Umesh = {zmesh;J’ 7'mesh;S}‘
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The intragranular currents are proportional to the gradient of the phase along the border of
the grain:i;j.s = i¢;j.s wherei = n,eh/m (ng is the density of superconducting pairs). The
discrete operators used up to now must also be generalized. Now, the curl along a plaquette
contains contributions both from Josephson and superconducting branches; see figure 1:

D\ _ 5Py 5_ (R Rys
(32)=-#(5)  #=(5 &) a9

Inside the grain, the magnetic flux is ®{s¢s = 0), and thusps is an irrotational field

(ps = GssV). On the other handiu = (R)Timess + Miey; (M is the immediate
generalization of matri/ defined above). The divergence and gradient operators are also
generalized:D — D, G — G, and the expression8 = (G)T, RG = 0 are still valid. The
Biot—Savart equation now reads

cI)ind;J = [\%mmh + A'L.e,'ct 2\\ = (A AJS) (19)

where contributions coming both from Josephson-like and from superconducting currents
are considered. As previously stated, the link currents are related to the mesh currents

through
ilink'] RT 0 imexh'J .
R = e + Mi,,,. 20
('Llink:s ) < Rjs R ) ("mesh;s ) t (20)

Zero magnetic flux inside grains implig&s¢;i.i.s = 0. This, together with equation (20),
giVeS Rss R ¢imesn: 1 = —RssRigimesn:s; here,M has been defined in such a way that the

curl of Mi,,, is null in the superconducting plaquettes (see figure 1). We can now re-express
the Biot—Savart relation as

(Dind;J = [\imesh;J + Aie)ct [\ =A-— AJS(RSSRES)_:LRSSR-]I-S' (21)
The generalized Lagrangian is now

Be

L. ) = E,{cosqb, — 1+ S5 + e (DO DI ~ T, — 5(69) s

1 A~ ~ - ~ A n
- s (Ro+2nf+ Aigt)"A Y RGP + 27 f + Adrr)
+ GRT(RRTY R, } 22)

Equation (10) applied to (22) gives a set of Euler-Lagrange equations. On applying
D to these equations, Kirchhoff expressions are obtained. The Biot-Savart law is then
obtained by applyingRRT)"1R. As ¢s = GssV, @5 = 0 is trivially obtained.

This procedure considerably increases the number of independent variables of the
problem, and becomes highly CPU-time consuming. For a simplified version of the model,
see, e.g., [27]

To conclude, we wish to point out that the forcing terix,.,, may include both a dc
component and an ac term, Sin(wt). The presence of the latter opens up a vast field
of research related to the competition between the frequency of the external forcing terms
and the characteristic frequencies of the JJAs. In this review, however, we will restrict
consideration to the case of an external dc force (the autonomous case). A description of
the dynamics in the presence of an ac forcing term (the non-autonomous case) will be dealt
with in a forthcoming paper [28]. Interesting contributions on this subject can be found in
references [18, 29].
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2.4. Comparison with other discrete models

Long junctions are usually described by means of the sine—Gordon equation. The phase-
invariant gauge is a continuous function that varies along the jun¢tiem, and obeys the
equation [13]

. 3% . %
Pehp —co 5 +siNg) = —ap+d——7 . (23)

Here 8. is the McCumber parameter and is the usual resistive term due to the tunnelling
of normal electrons across the junction; thé?¢/dx? term accounts for the dissipation due

to the flow of normal electrons parallel to the junction [3@]= i/i. is the usual bias term.

If one neglects the third-derivative term and discretizes this model [31, 16], one obtains

.. . . 1
ﬂC¢l’l + a¢n + ln Sln(¢t1) = iext;n + E V2¢il (24)

whereV2¢, = 2¢, — ¢,_1 — ¢..1 is the discrete Laplacian, and = D/ is the discrete-
ness parametel) is the distance between pointsind j, anda; is the junction penetration
depth). The continuous model is obtained by making- 0.

An analogous model is obtained when considering 1D Josephson junction arrays, as
shown in figure 3. In fact, conservation of the current at nogieelds

Bebi + i + SING) = iy + i; — 1. (25)

Here, thep; are the vertical gauge-invariant phases gnid the mesh current for cell as
defined above. Along the superconducting horizontal links, the current density is given by

Js = [(nseh)/m] (VO — (2 Do) A)

(ns is the superfluid density). Making the approximation tlats uniform, the (normalized)
superconducting current is = o Js/1. (o is the cross-section of the current). Integrating
the termVo along the border of plaquetie one obtains

%W@M:%n

which implies

seh
2i = % onw — i + i — D)) (26)
I.D m
and thus
o nyeh
i —ij—1 = D ﬁ(d’ﬂrl +¢i—1—2¢) + iy — & + 2n(n; —ni—1). (27)

If the array inductance is neglected and the external field is unifegbm=£ 27 f), we
obtain an equation which is formally equivalent to (24), witB = (I.D/o)2m/(nseh),
plus an extra term taking into account the vortices existing in the array. Note that here
the expression fow is strictly related to the characteristics of the supercurrent flowing in
the horizontal branches, while that given in equation (24) derives from the discretization
of the Josephson current, a procedure that has to be carried out for performing numerical
simulations.

To include screening effects [32], one can proceed as follows. The mesh currents are
linked to the flux across the plaquettes #y= Ad,.;, + At.,,. If the external current
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Q) Iex1’ ] d)

Figure 3. (a) A long Josephson junction; (b) a long Josephson junction ring; (c) a stacked
junction; and their discrete counterparts: (d) an extremely anisotropic ladder (an inductively
coupled 1D JJ chain); (e) an extremely anisotropic ring (i.e. a ladder with periodic boundary
conditions); (f) an extremely anisotropic 2D array. The coupling alongxtieanches (no
junction) is much stronger than the coupling alongfHaranches. (g) A schematic representation

of a dynamical system described by the Frenkel-Kontorova equation.

iS homogeneousA, jicy:; = &Eilexr, Where§ = Zj A, ;, Now, on neglecting the non-
diagonal terms of\, the magnetic flux is given b; = Ao oi; + &ii.x: + 27 f and thus the
currenti; is given by

A+ aAoo)ii = a(2nmw + ¢iv1 — @) — abjiey —a 2nf (28)
where
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The limit A — oo implies Ago — 0, and equation (27) is obtained. However, whanis
small enough that\oo > 1, the whole of equation (28) must be considered, and thus the
current conservation at théh node reads

. . . . o
Bedi + ¢ + SIiN(@;) = ipyy (1 - m(fi - 551))
o
+ J—“‘TAO,O(ZN(M —ni_1)) +e€ (29)

wheree contains the contribution to the curreritsi;_; coming from the fluxes across the
rest of the plaquettes. Neglecting the non-diagonal components, @fgain an equation
formally equivalent to (24) is obtained, with = ,/Ag o; note that, in this particular system,
)\.j X AO,O-

In all of the sine—Gordon-like equations considered abavesan be interpreted as a
generic coupling strength of the vertical phases. The limit> 0 implies thatp; — ¢;1;
large values of: allow large horizontal variations of the phases.

In fact, the discrete sine—Gordon form is an approximate version of the equation of
motion derived from the ‘JJ array formalism’, for when the phases vary slowly along the
x-direction [33]. In fact, if one writes down the equations of motion (imposing Kirchhoff's
law) for any pair of opposite nodes in the arr@y.,, 6; sown), and subtracts them, one gets
the following equation:

C o\, R, _N\12 d N
[1— (2Cyv >:|ﬂ¢ @((ﬁ)ny + [1— <2va )1|R_) a((ﬁ)n;y + 1. S|n(¢n;y)

- 217 3 costy () = -+ DISiNg(n) = $(n-+ D]/ = e (30)
Here, ¥ (i) = 0;.p + 0i.40un, and thegs are, as usual, the gauge-invariant phases along
vertical links. Equation (30) becomes sine—Gordon-like if: (a) all of the combined space
and time derivatives of order three or higher are negligible; and (b) the variati®@malohg
the x-axis is sufficiently slow that the cosine factor can be taken as 1, and the sine factor
can be linearized:
2

dr?

d . »
(¢)n:y + E((p)n;y + in;y Sln(¢n;y) - iext - 217V2(¢)n;y = O (31)

Be
The V2 operator emerges in a natural way because of the coupling along-direction
and because of the imposition of Kirchhoff's conservation law at the nodes.

On comparing equations (24) and (31) one immediately sees that in the latter the role of
the discreteness factor is played by the coupling anisotropy of the ayy&y,. Indeed, for
iy > iy, in order to keep the currents within reasonable limits, the horizontal phases must
be small; their time derivatives)(, ¢,) thus become negligible, and conditions (a) and (b)
are fulfilled.

Thus the discrete sine—Gordon model, which describes systems of non-linear oscillators
linearly coupled along the-direction, is equivalent to the ‘array formalism’ in the limit of
highly anisotropic JJ ladders.

It may also be of interest that if, in equation (30), one does not neglect all of the
combined space and time derivatives, a term formally identical td¥pe9x? present in
equation (23) is obtained. Their physical meanings, however, do not coincide.

Let us now consider the Frenkel-Kontorova (FK) model. For a recent review on this
model, see reference [34]. The FK model is used to describe systems composed of a set
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of particles, interacting through a linear force, placed in a periodic potential; see figure 3,
where, as an example, the 1D case is shown. The Hamiltonian is

K 1
H = ;{V(ui) + U(Auyj)} = ;{(Z—H)z[l — cos2ru;)] + E(Auij)z} (32)
whereu is the position of theéth particle and the sum ovgris over first-nearest neighbours;

K gives the amplitude of the periodic potential. The FK model applies to systems of particles
whose number is not constrained to be equal to the number of potential minima; it can be
either larger or smaller. In order to apply the FK model to the case of the JJ ladder we have
to identify the positions of the particles with the gauge-invariant phases of the JJs lying along
the y-direction, ¢;.,. As a consequence, the number of minima of the periodic potential is
fixed and equal to the number ¢f., minus one. If one also adds a dissipative and a kinetic
term, the FK model can be straightforwardly mapped onto the discrete sine—Gordon one.

2.5. 'Particle’ versus phase dynamics

In the introduction we pointed out the strong correlation between the operational mode of
cryodevices based on JJAs and the dynamics of vortices. We have shown that a complete
description of the JJA dynamics can be given in terms of the gauge-invariant phases. To
conclude this section and, also, the part of the review devoted to the ‘JJ array formalism’, we
would like to discuss the relationship that exists between the vortex and phase descriptions
of JJA dynamics.
In a very general manner, a vortex can be treated as a particle [38, 39] that, under the
action of a certain potential/ (x), is forced to move in a viscous medium. Periodically it
has to overcome energy barriers related to the links encountered along its trajectory.
When we consider the dynamics of a single vortex, the potelitia) can be identified
with its Gibbs energyl/ (x). This latter can be decomposed into six terms [35, 36]: the core
energyU, = w2/2, defined as half the energy needed to create a vortex—antivortex pair;
the energy of a vortex in the absence of magnetic fields and external cutignt3, the
energies due to the interactions with the external field and with the bias cubignt, and
U; (x); the term that takes into account the periodicity of the arigy, (x); and U, (x),
the term due to the screening currents. Strictly speakihglepends also on the vertical
coordinate,y. Here, in order to simplify the discussion, we assume that the vortex moves
along the central row of the arragy = 0). The analytic expressions fav;(x), Uy (x),
Upor (x) and U, (x) in terms ofhl./(2e), with x normalized toa, are given by

Ui(x) = —Zni(x + %) (33)
72L2 2

Ur(x) =— > f<1—4<z) ) (34)

Uper (x) = —%EB cos2mx). (35)
1 1 1

Unnag(x) = E(izmk)Tmﬁ Yink = EaT 47, ff ta. (36)

where: L is the array dimension in the direction perpendicular to the flow of the bias current;
the coordinates are normalized to the cell dimensipand E is the energy barrier that
the vortex must overcome to move from one cell to the next one. We fixed the origin of
the coordinatesy = 0, at the central column of the array.
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As far asUy(x) is concerned, its expression for finite samples and= oo is

Uplx) =7 In(Z—L cos(n—x>>. (37)
T L

The modification ofUy(x) for finite value ofi,; [36] is discussed in the next section.
Given the above expression, the equation of motion for the vortex can be written in the
following way:

E, dU E . .
Myl5 = —l—’d— — lgi = Mylai + nlax + l—’<nEB sin(2rx) — 27i + 472 fx
a OX a
dUO dUmagn
0 TTmasn ) 0 38
+ o et (38)

wheren is the coefficient of viscosity. The equation of motion of the particle (vortex), thus,
resembles very much that of the phase of a single JJ subjected to a washboard potential.

It is natural to associate the kinetic ter(d/2)C Y Vii with (1/2)M,x%. In zero
magnetic field and in the no-screening approximation, the phase profile of the phases around
a vortex is given by [37§ = arctan[y; — yo)/(x; —x0)]. In the quasi-static limit one obtains
[23] Vij = (®o/2m)(%/1)(¢: — ¢;) and, by summing over the phases, one arrives at, in
agreement with reference [39], the following mass expression:

dp2C
MU = 2]—5. (39)

On the other hand, the power dissipated by the moving vortex is equal to the sum of the
power dissipated in all of the links of the array? = Zij VijZ/R,»J-. n can be expressed in
terms of the effective shunt resistancge(i.e. the equivalent resistance of the whole circuit
between two siteg and ;) [40]:

dy?

—. 40
212, (40)

)’] =
Now, if in equation (38) one makes the substitutiorn2— ¢, one obtains, in the limit
of very large samplesl(— o), the following expression:

2 2
S %Z—ZMEJ(EB sing — 2i) =0 (41)

which shows the equivalence between phase and ‘particle’ dynamics in the limit of large
samples and foif — 0. Indeed, only in these limits a@,,,,, and Uy independent of
in the bulk of the array (i.e. at a distance from the border larger than the vortex size) and
is the ‘arctangent’ expression applicable. From equation (41) it emerges that the depinning
current of the array i$;, = Ep/2. We can define vortex-like quantities analogous to the
junction-like onesg, and w, = /B./(RC) (the plasma frequency) bg., = Ezp. and
Wpy = \/E_Bwp-

Finally, one should note that equation (39) implies no dependendé oh screening
and, also, a linear dependenceMfon C, while equation (40) implies a constamtf, like
in the Bardeen—Stephens model,is taken as constant. However, strong deviations from
the behaviour predicted by equation (39) and (40) have been ‘observed’ [41, 47, 36, 42]
in both overdamped and underdamped junctions and these will be discussed in the next
section.
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3. The dynamics of massless vortices

When . < 1 the dynamics is overdamped. In the extreme limit, wher> 0, the vortices
can be considered massless ‘particles’. An example of arrays made up of superconducting
junctions having a capacitance close to zero is that of SNS arrays; see figure 1. In these
systems the coupling to the environment is very strong, ohmic dissipation dominates the
dynamics and the motion of the vortex wiscous under the assumption of a Bardeen—
Stephens-like dissipation mechanism, equation (38) reduces to

nv = —dU /dx. (42)

Since the main goal of this review is to describe single-vortex dynamics (i.e. the kink
dynamics) in discrete systems, we will go through the discussion of the conditions needed
to form and depin a vortex, and the experimental parameters that have the major influence
on the characteristics of the vortex motion (energy barriers, viscosity, bias current etc) and
which, in turn, define the vortex velocity. Particular attention will be paid to pointing out
the effect of screening currents and the sample geometry.

3.1. The pinning potential and depinning current

As is well known, the Kosterlitz—Thouless—Berezinskii (KTB) critical transition [43] sep-
arates the resistive regime of the array (at high temperatures) from its superconductive one
(at low temperatures).

Below the critical temperaturdtrp ~ E,;/K ), in the absence of an external magnetic
field, vortices are bound in vortex—antivortex pairs. In the absence of energy barriers, such
as in a continuous superconducting film, any non-zero current will break the most weakly
bound pairs. In discrete systems like the arrays, however, each link represents a barrier to
the vortex motion and vortex—antivortex pairs remain bound for bias currents lower than a
given valuel;. Indeed, if the energy supplied by the external source in the time unit is not
high enough to break these pairs, the array remains in a superconductive regime: no free
vortices are present and no voltage is measured at the sample kdgeusually referred
to as the depinning current.

In the presence of a magnetic field, unpaired vortices are present for temperature lower
than Tk rp; in fact the field induces a ‘torque’ on the phas¢sand when it is high enough
(i.e. when the sum of the phase differences along the contour of the samp2risa
vortex will enter the array in order to minimize the energy of the system. These vortices,
however, although unpaired, are pinned: in order to pass from one cell to the next, they
must overcome the energy barri€l, also known as the vortex pinning potential. Thus,
the vortex/antivortex remains pinned in a plaquette until it receives enough energy to jump
over the barrier, from either thermal noise (temperatures must be suckgthat Ej), or
the bias current. Wheff < Eg/kg, and the current is lower than thigepinning current
1,(T), the vortices are not able to move and no voltage is measured.

Numerical simulations show that in 2D arrays a static configuration with one single
vortex can be stabilized also in the absence of any frustration (internal or external); it is
worthwhile to stress that only in this case are the phases expected to follow the ‘arctangent’
distribution [37]. The same is not true for the ladder, for which a vortex can be stabilized
only for f > 0.12 ori, < 2 [44]. By taking the energy difference between the case in
which the vortex is centred in a cell and that of a vortex centred on a junction, one can
determine the stati& g [37].

In the no-screening limity; = oo, it has been found that the static valueRyf, in terms
of E;, is 0.2 for a 2D square array andd23 for a 2D triangular array. These values have
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Figure 4. (a) A ladder: Ep (static determination) versus, ; in the inset we show the current
distribution around a vortex when it is in celisandi — 1. (b) A ladder: Eg (dynamic
determination) versus the vortex velocity for different values. of the three curves have been
obtained with different values af.: 0.8 (0); 0.9 (¢); 0.95 (). (c) An anisotropic ladder, 322:
Ep (dynamic determination) versus;,/E;, for A, = 10 for the different values af;. given

in the key. (d) is as (c) but with; = 1.

been worked out for the limit of very large arrays [37] and have been confirmed by numerical
simulations of the dynamics in a small array with periodic boundary conditions [45].

These values of 3 are substantially affected by decreasing For example, at; = 1,
Ep is greater than @ [17].

It has been noted that finite-size effects may also affect the valuezpfit increases
with decreasing array size [46]. This observation for triangular JJAs agrees with calculations
performed for the ladder [47], where it was found to be much higher than in the 2D case.
In fact, in the region of stability of the single-vortex solution, one always figs> 0.75
and evenEg ~ 1.2 for A, = 0.5; see figure 4.

In extremely anisotropic ladders [32Z]z becomes negligible fox, > 1, a result found
in recent simulations of the dynamical properties of anisotropic ladders, performed as a
function of the coupling anisotropyg ;. /E;,: Eg — 0fori, > 1andE;,/E;, > 5. On
the other hand, fok, < 1 andE,;,/E;, > 10-100,E; saturates and the saturation value
strongly depends o, andi,. [28].

Experimentally, it is possible to measukg by measuringl,;. In fact, in the limit of a
very large array/, should be equal t&z/2; see equation (41). The measurements on both
2D square and triangular arrays give values somewhat higher than the numerical predictions
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Figure 4. (Continued)

[22]. The discrepancy may be due to pinning and/or to the finite valug ¢the measured
sample had 300 plaquettes to a side, while= 10).

We do not know of any experimental measurement ofor a standard overdamped
ladder. Accurate measurementsigfversusa , on the other hand, have been obtained for
extremely anisotropic (underdamped) ladders subjected to a sfnallp.2, magnetic field
(see reference [48]) and, also, for a single underdamped ladder as a funcifof @f.

Finally, we would like to point out thaf, can be modulated [48] by the application
of an external magnetic fieldf, and that its value increases s~ 0.1[1 + 7§f] in the
presence of ‘moderate’ lattice defects [50]gives a measure of the strength with which
defects tend to pin the vortex.

3.2. The vortex velocity and the dynamical determinatio® pf

E 3 depends not only ok, , but also on other factors such as the bias current and the sample
geometry.E 5 can be determined dynamically from the variation of the array enex@yz),
induced by the vortex motion as a function of the time. By decomposifg) one can
extractU,,, [47] and thusEg; see the previous section.
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Figure 5. (a) Examples of vortex trajectories as functions of the lattice size. (b) Examples of
vortex trajectories as functions af, for a 32x 2 ladder.i;. = 0.9. (c) Up(x) for a 32x 32
array, for different values of;: 1/2 (v); 1 (¢); 2 (A); 32 (x); 64 (0). For a 32x 32 and a

48 x 32 array we also compare a dynamical determinatiot/qifc) (solid lines) with the static

one when.| = co.
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Figure 6. (a) A 2D array: the steady-state vortex velocity,versusi,. for different values of
Al 00 (e); 2 (0); 1 (A); 1/2 (o). Comparison is made with the results obtained for a ladder
in the absence of inductance (the continuous line). (b) An anisotropic laddesrsusi,. for
different values of the rati& ;. /E,,; see the key.

It is worth mentioning that to study the single-vortex dynamics one does not need
necessarily to stabilize the vortex by applying a small magnetic field that has the effect of
applying a continuous perturbation to the system. Indeed, the creation of a single vortex
can also be achieved by temporarily breaking a vertical link [51, 52]. For sufficiently
large currents, vortex/antivortex pairs are created at the edge of the defect. By breaking
the rightmost link, it is possible to induce the creation of just one vortex at the border of
the ladder. After its creation, the vortex, subjected to the Lorentz force, moves along the
ladder in an environment free of any perturbation due to external magnetic field. The vortex
velocity can be calculated directly from its trajectory.

The results obtained for a ladder, by applying this procedure, are displayed in figures 5
and 6 and can be summarized as follows.

(a) The vortex moves with a constant velocity; acceleration occurs only when it crosses
the outermost cells. This constant-velocity propagation is observed regardless of what the
values ofiz, andi | are.

(b) The vortex velocity increases almost linearly wighfor i;. < 0.75 and superlinearly
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Figure 7. Alternate-vortex motion (AVM) imaged by LTSEM. (a) A grey-scale representation

of the voltage image\V (x, y) for a 20x 10 array atl’ ~ 5 K. I, flows horizontally through

the array; white (black) signals at the top indicate incoming vortices (antivortices); on the same
row, black (white) signals at the bottom indicate outgoing vortices (antivortices). (b) AVM:
the time-averaged number of moving vorticed &nd antivortices «) worked out by means

of numerical simulations. Note that, like for the real experiment, the AVM is disturbed by
edge effects. (c) The variation of the voltage signal expected on the basis of the simple model
described in reference [53]. (d) The measured profile on a single row of a 18 10 array.

(e) The variation of the Josephson energy induced by the moving vortex as detected by numerical
simulations; the vortex has been generated at the 12th plaqXtéc) and (d) are courtesy of
Doderer and co-workers [53].

for higher currentspy decreases with | .

(c) Ep decreases with increasing vortex velocity. kor= oo, Eg(v) follows a simple
exponential dependenc&p = o exp(—pv) wherea ~ 2.5 andg ~ 2r. For a finitea |,
Eg(v) does not follow any simple functional behaviour.

(d) As expected, the limiting expression for the 2I3 is not applicable to the case of

a ladder.

For 2D square arrays the situation is quite different.
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Figure 7. (Continued)

(a) The acceleration rate grows with the vertical extent of the array and with decreasing
A1 . Uniform linear motion is observed only when the vortex moves in the central zone of
a large array, far from the edges.

(b) In the central zone the vortex velocity increases with the bias current and with the
vertical length of the array, and decreases with decredsing

(c) Ep is a decreasing non-trivial function of the vortex velocity.

(d) The expression fot/y valid for A, = oo is modified by screening: the average
value of Uy decreases with ; and the spatial dependence léf flattens.

(e) Above a certain value of the bias current (which depends,oand on the vertical
size of the array) the annihilation of a vortex (antivortex) at the border of the array induces
the creation of new antivortices (vortices) in the adjacent rows, leading, over time, to the
formation of a new dynamical state: the so-called alternate-vortex motion, AVM.

This state was first described by Lachenmatmal [53] on the basis of their LTSEM
observations, and confirmed in numerical simulations [54]. The AVM—see figure 7—
consists in an ensemble of vortices/antivortices that are reflected up and down by the
even/odd (or vice versa) rows of the array. In LTSEM measurements, by means of a
scanning electron beam, one locally perturbs the sample dynamics and detects an induced
voltage variation,AV (x, y), at the border of the arrayAV (x, y) is proportional to the
derivative ofU (see figure 7) and thus to the vortex velocity (more on the basic principles
of the LTSEM imaging is reported in reference [55]). The LTSEM trace of figure 7 confirms
the acceleration of the vortex in the proximity of the array edges. The smoothing of the
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sinusoidal oscillations of the LTSEM signal in the centre of the array has been ascribed
to the variation of the vortex velocity profile induced by the electron beam; however,
since the LTSEM results are average measurements of the dynamical state of the sample,
vortex/antivortex recombinations (which are allowed under certain conditions) may also
contribute.

It is important to note that, provided that the bias current is high enough, the existence
of an initial vortex (or any other symmetry-breaking mechanism—such as screening [56])
is a sufficient condition for the development of AVM [36].

A bridge towards the continuous limit is provided by the study of vortex dynamics in
overdamped anisotropic systems. Up to now only preliminary studies on anisotropic ladders
have been available [28]; their findings can be summarized as follows:

(a) no matter what the value d&,,/E,, is, the vortices always annihilate at the edge
of the array;

(b) v increases withE,, /E,, and saturates, but only far, < 1; and

(c) for a sufficiently highi,. and a sufficiently low anisotropy, dynamical instabilities
are observed.

Many of the above observations find a common explanation in the dependence of the
vortex size om; and on the array geometry; see the next section.

3.3. Energy dissipation, the viscous coefficient and the vortex dimension

The value of the viscosity coefficientcan be calculated by measuringand the dissipated
power, W, = dEg;/dt; v can be obtained from the vortex trajectory, aig,, is just
[®2/(472)] Zij d;,?j/R,-j. r. IS not constant but depends an and the array geometry, a
dependence that can be understood by considering the vortex size [47, 36].

In figure 8 we show the spatial distribution of the cell currents, measured in different
situations and for different samples. We can summarize the results as follows: the vortex
size increases with

(a) AL (see for example the static determination for a ladder);
(b) the vertical size of the array; and
(c) the anisotropy.

In addition, we observe the development of an asymmetry in the vortex profile (i.e. a
higher current density towards the back of the vortex) which is caused by

(a) the superlinear increase ofwith i,;
(b) the vertical extent of the array; and
(c) the coupling anisotropy.

An increase of the vortex velocity, and thus of the equivalent resistance, is always
associated with an increase in the vortex size. This is a quite reasonable result because
is defined roughly as the dimension of the sub-array over which the vortex extends. The
largerr,, the smaller the damping coefficient and the higher the velocity.

In overdamped arrays, thug, cannot be assumed constant, but depends on the bias
current, on the screening and on the geometry of the array.

Our results are in agreement with those reported in reference [41], where to account
for the dependence of on the bias current the following phenomenological law has been
suggestedy = A/(1+ Bx) with A = 2.67 andB = 1.80.

A dependence of on A, has been found and discussed also in reference [42], where,
assuming a linearized Josephson current equation, the authors worked out the following
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Figure 8. (a) An 128-cell ladder: the shape of a moving vortex in the cases whete 0.9,

Al =00 (e), ige = 0.5, 1) =00 (0) andigz. = 0.9, A, =1 (continuous line). The asymmetry

of the distribution is due to the fact that the vortex is in motion (from right to left). (b) An
anisotropic ladder: the shape of a moving vortex as a functioB Qf/E,;,; see the key. (c)

A 2D array: the shape of a moving vortex as a function of the transverse size of the array for
32x N, arrays (V, = 2 (e), 4 (2), 8 (¢), 16 (x) and 32(V)).
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relation:
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wherer, is the normal junction resistance and
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This expression provides a good fit to the data but does not include the well known
dependence of on the bias current.

One may note, however, that none of the above expressions take into account the
dependence af on the size of the array (i.e. on the size of the vortex) inthdirection.
Further investigations on this subject are still needed.

Ep, also, decreases with the vortex size. The fact that a less localized particle should
overcome a lower energy barrier is also a reasonable result: the larger the vortex is, the
smoother its shape becomes; thus the crossing from one cell to the next one requires less
dramatic phase shifts and, thus, a smaller energy.

The dependence of the extent of the vortex on the vertical size of the array also modifies
the profile of Up(x)—see figure 5—and explains the acceleration to which the vortex is
subjected in the proximity of the borders. On decreasing the vortex becomes more
localized, Uy flattens and the region in which the vortex moves with a constant velocity
enlarges.

It is interesting to note that in the anisotropic ladders, for shor{i, ~ 1) the vortex
cannot extend beyond a certain limit and, as a consequenckg,/ifr > 50-100,v saturates.

Let us now consider the asymmetry of the vortex shape. Such an asymmetry decreases
with A, and increases with, becoming more visible whemn starts to increase superlinearly
with iz.. It is likely that the asymmetry develops when the transit time of the voiigx,
becomes shorter than a certain characteristic restoring time of the array.

The distortion of the vortex seems to be evidence for a non-canonical dissipation
mechanism. When the vortex moves too fast, the phases have no time to relax; the system
is not able to dissipate all of the injected energy and an amount of energy is stored in the
array in the form of a more or less extended perturbation of the phases (since here we are
dealing with overdamped arrays, it is not obvious that these perturbations would travel).

Such a non-canonical dissipation mechanism may explain the vortex ‘reflection’ and the
development of the AVM in 2D arrays. In fact, at the moment of the vortex annihilation
it may be that the energy stored in the sample is large enough to induce the formation of
new vortices/antivortices that propagate in the opposite direction. If the number of induced
vortices/antivortices becomes larger than the number of annihilated ones, the energy stored
in the array progressively increases and the process continues until the AVM, a steady
dynamical state, is fully developed.

To conclude this section, we would like to point out that experiments intended to study
in detail the true single-vortex dynamics (not the average dynamical state of the array) are
possible [57], but since the measurements are quite ‘delicate’ ones, they would require a
coordination of many groups and resources [58] that, unfortunately, up to now has not been
made possible.
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4. Dynamics of massive vortices: underdamped JJAs

When the junction capacitance is not negligibfg, # 0, the vortex acquires a mass.
When g, is somewhat greater than unity, the vortex motion enters the underdamped regime.
Usually, information on the average vortex dynamics in underdamped arrays can be obtained
by measuring thgd—V characteristics, which provide evidence of the existence of different
dynamical regimes. One can distinguish between:

(i) a low-voltage regime in which one can obsemero-field step$59] when f = 0
(induced by the back-and-forth motion of vortices reflected at the boundafies)flow
(induced by the motion of vortices that are continuously injected at one edge and annihilated
at the opposite one) arfeiske stepgdue to the resonance between the moving vortex and
the waves excited in its wake), wheh=# 0, in both the linear [69] and non-linear regimes
[59, 63];

(ii) a high-voltage regime where instabilities show up: a whirling mode in extremely
anisotropic ladders (i.e. 1D parallel arrays) and row switching in 2D arrays; the latter are
observed whery # 0 or A, # oo; and

(i) a linear branch regime wher® increases linearly with.

Thanks to numerical simulations, one can investigate the details of the vortex motion in
all of the above regimes. In the following we will give an updated overview of our present
understanding of single-vortex dynamics in underdamped arrays.
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Figure 9. The steady-state velocity versfs in the case of a massive vortex in 32 ladder

for different values ofiy.; see the key. The lines indicate the borders between the different
dynamical regions where one observes vortex annihilation, vortex reflection and dynamical
instabilities.

4.1. Vortex depinning, vortex annihilation and vortex reflection
When 8, takes a value somewhat higher than 1:

(a) thel-V characteristic becomes hysteretic [22]—this observation supports a ‘particle-
like' description of the vortex dynamics;

(b) the vortex retrapping current is lower than the depinning current, but, due to thermal
fluctuations, the difference is reduced progressively to zero for more and more resistive
samples; and



1478 J C Ciria and C Giovannella

(c) the depinning current decreases with increagingln reference [60] it is suggested
thati, should decrease W a prediction that when compared with the experimental
results of reference [22] shows a reasonable agreement, despite the large spread of the
parameter values.( and the geometrical size) of the samples considered.

The vortex motion is influenced by parameters le i, andi, also in underdamped
arrays. As an example, in figure 9 we show, for the case of a ladderiwite oo, a v
versusg, plot. The lines separate different dynamical regimes. In the ‘annihilation’ regime
the motion of the vortex turns out to be very similar to that observed in the massless case.
Again v depends ori,. but, in addition, in underdamped arraysdecreases witl. and
tends to be independent of. for very larges..

Annihilation of vortices at the borders is observed also when an external magnetic field
f is switched on. Vortices are continuously generated at one border and annihilate at the
opposite one. As a consequence, a nhon-zero voltage is measured: this is the so-called flux-
flow regime. The flux-flow resistance, characteristic of this regime, can be shown, under
certain approximations, to be linearly proportional to bgthndr,. The linear dependence
of rrp on f (up to f ~ 0.25) has been checked both experimentally [22] and numerically
[41]. To check the proportionality betweef, andr, one has to take into consideration
the fact that, as for the overdamped arraysgdepends on the size of the vortex and thus
cannot be identified straightforwardly with the normal-state resistance of the junctions. An
experimental proof of this is reported in reference [42].

When g. is high enough, one observes a transition to a new dynamical regime: that of
‘vortex reflection’ at the borders. At each reflection the vortex/antivortex is reflected into
an antivortex/vortex; note that in underdamped systems we are faced with a true vortex
reflection: the incident and the reflected ‘particle’ move on the same row. The vortex
reflection occurs not only in 2D arrays [61] but also in ladders [28] (where massless vortices
always annihilate at the borders) and in extremely anisotropic ladders [59, 70]. Vortex
reflections may be repeated at each border, being analogous to the ‘soliton’ reflections in
continuous long Josephson junctions, LJJs [15]; in a very similar manner, such reflections
produce a non-zero average voltage, i.e. a zero-field step. In 2D JJAs the zero-field step
seems to be characterized by a relevant non-zero slope [61], but it is likely that in anisotropic
arrays with a short ; the zero-field step would flatten. This is a point that has to be checked.

Also, for underdamped arrays we expecand the vortex mass to depend bn and
the vertical extent of the array, i.e. on the vortex size. Some experiments and numerical
checks, although not complete, can be found in reference [42].

When 8. is of the order of 50 or more and, is not lower than 5, the region of the
B. versusiy. plot in which one observes vortex reflection splits into two and an additional
vortex annihilation area materializes in between [61]. It is suggested that this latter is caused
by the excitation of additional dissipative modes (see the next section) that interfere with
the vortex motion, slow it down and cause its annihilation.

Preliminary results seem to indicate that no such additional vortex annihilation region
exists in the underdamped ladder, an observation that agrees with the progressive shrinking
of the ‘reflection’ region in 2D arrays with decreasihg (at least wherB, takes values as
high as 100) [28]. This point also needs further investigation.

4.2. Dissipation and resonances

In the flux-flow regime it is observed that fg¢ > 1, . decreases ag/B. and takes values
even smaller than the normal resistance. In agreement with experimental observations [22],
numerical calculation shows that increases aswn./B. = 2rE;/a’w, (a relationship
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Figure 10. The experimental-V curve for one vortex trapped in the ring measured at 6.4 K,
whereAj? = 2.2 andB, = 61. The solid line showsd/d/. Inset: the voltage position of the
six steps versus the mode numleer The curve is a fit to the dispersion relation given by van
der Zantet al. The sample used in the experiment is sketched in figut@irtesy of van der
Zant et al [63]

strictly correct only ifv increases linearly with,.); that is, n. does not depend on,

[60]. These results are not compatible with Bardeen—Stephens-like ohmic dissipation [62]
and suggest the existence of an additional dissipation mechanism [22]. The existence of
this latter also defines the limits of the calculation of the vortex mass, as derived in the
previous section. The cause of the additional dissipation mechanism has been identified as
the excitation of spin waves in the wake of the moving vortex [45, 60]. Such a hypothesis
has been proved correct in numerical simulations either by the direct numerical observation
of current oscillations or by the appearance of resonances inH¥ieharacteristics in linear

and non-linear regimes (Fiske steps). In particular, these latter have been experimentally
measured in an extremely anisotropic ring (figure 10) [63] and ladder [65, 70], and predicted
by several groups [64, 31, 65] on the basis of discrete sine—Gordon-like equations.

The experimental observations confirm the predicted bending of the acoustic branch at
the edge of the Brillouin zone. It is worth stressing that this is an effect of the discreteness of
the system; in a long Josephson junction, in fact, the acoustic branch has a linear dependence.
Experiments have also shown that the inductive term is quite relevant in determining the
degree of the bending of the acoustic branch. More spectacularly, it has been demonstrated
that, in the linear regime, an optical branch exists when the chain is composed of alternate
junctions having two different critical currents [69].

4.3. Vortex motion in the absence of a driving force: ballistic vortex propagation

In underdamped JJAs, because of their mass, vortices should be able to propagate inertially
when the driving term is switched off [66]: ballistic propagation. Of course the kinetic
energy of the vortex has to be larger than the potential energy, which implies that
Umin > ~/Epl,w,/m. On the other hand, the vortex velocity also has an upper bound
because it must not excite spin waves,, ~ 0.1l,0,, as deduced from a continuum
model [60]. Up to now there has been just one experiment, on 2D triangular arrays, for
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which ballistic motion has been reported [67]. In this experiment, vortices were accelerated
in one JJA and then detected in a second, separated from the first by a narrow rectangular
JJA channel. The second array was not biasgd:= 0. In the absence of an applied
current, and in the approximation of a negligibl& @tx, the equation of motion of the
‘particle’ becomes simplyW v +nv = 0. From this equation one can deduce an exponential
decrease ob = voexp(—nt/M) and a mean free path of the orderwfRC, much larger

than that characteristic of bulk superconductors for which the time constant is very short,
10717 s [23]. For the experiment, it was estimated that 0.016/,w,, a value somewhat
lower than what was expected to be needed to overcome the pinning ba@i48E( it

should have required a peak velocity=0.07/,w,. Nevertheless, vortices may travel much
faster than had been estimated, reference [67], at abeut® lattice spacings per second,

so this may not be a problem. The results suggest that ballistic motion is possible just above
vortex depinning. Recent results obtained by Fatial imply a stiffer spin-wave spectrum

and a larger window for ballistic motion, up t9,.. ~ 0.5/,0, [68]. However, to date

there are no experimental data that support ballistic propagation of vortices at so high a
velocity, in homogeneous 2D arrays. Numerical evidence for ballistic motion in anisotropic
ladders has been obtained for when the anisotropy is high enough to yield a small damping
coefficient and vortex mass [33]. Since the effect of screening on the ballistic motion has
not yet been investigated, we may conclude that this point deserves further investigation.

4.4. Dynamical instabilities and row switching

If we are in the dynamical regime characterized by vortex reflection and we incggase
further, the vortex dynamics becomes unstable. In numerical simulations we have observed
such instabilities in ladders and in more extended 2D arrays. Beyond a certain vgye of
the vortex reflection region disappears and one passes directly from the vortex annihilation
region to the instability region. The critical value 8f required for this to happen seems

to decrease with increase of the vertical size of the array. In 2D JJAs, instabilities are
known to induce what it is called a row switch. Since we do not see how this concept can
be straightforwardly applied to ladders, in the rest of this section we restrict ourselves to
considering instabilities in the 2D JJAs. From the results reported in the literature [71, 26],
in 2D arrays row switching is observed only wh¢n#£ 0, or if f = 0 for A, # oo, and

what occurs is a switch to the normal state of one or more entire rows of the array; as a
consequence a voltage jump as highias.n/N, is observed, where is the number of
switched rows.

Row-switching phenomena have also been imaged and confirmed by LTSEM (see
figure 11) [53].

The mechanism of the row switch has not yet been described quantitatively. On a
gualitative basis it has been suggested [60] that a row switch occurs because single junctions
are in the metastable part of the zero-voltage branch of théit characteristics and an
external perturbation, like a passing voltage, can initiate a transition to the non-zero voltage
branch.

An interesting feature of the row-switch regime is the high degree of coupling between
the junctions of the array, leading to the formation of coherent dynamical states in which
‘vortices’ move in columns. A Fourier analysis of the voltage signal in the row-switch
regime shows very sharp peaks and supports the assertion of coherence of this dynamical
state [26]. Such a coherent state may be disturbed and even destroyed by a finite value of
A1. No experimental confirmation of these numerical results has been obtained up to now.
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Figure 11. (a) A grey-scale representation of the voltage imagdé(x, y) of an underdamped

10 x 10 array at~5 K. The dark area indicates a negative electron-beam-indadéck, y).

Five rows are in the voltage state. (b) The current—voltage characteristic of the array; the
LTSEM image of the row-switch state was taken at the fifth st@wourtesy of Doderer and
co-workers [53].

4.5. Comparison with continuous systems

A long and stacked Josephson junction can be considered as the continuous counterpart of
extremely anisotropic JJA arrays. Long Josephson junctions are characterized by several
prominent dynamic features in thle-V characteristics [16]:

(a) zero-field steps;
(b) a flux-flow regime; and
(c) Fiske steps.

We have already seen that in discrete arrays one can observe very similar features.
Nevertheless, there are some differences. In a discrete system there is always a finite
barrier that the vortex has to overcome to move from one plaquette to the next; moreover
the vortex excites spin waves in its wake, the dispersion laws are no longer linear and,
under certain conditions, optical branches are detectable (see figure 12).

In addition to the above-mentioned characteristics, in stacked long Josephson junctions
one also observes:

(d) resonance branches corresponding to different vortex propagation states characterized
by different velocities. As an example, with two stacked junctions one observes vortices
that propagate along the junctions being locked in phase or out of phase [72].

Some experiments have been performed on extremely anisotropic two-row arrays (also
called inductively coupled arrays) and, as for the continuous case, in-phase and out-of-phase
vortex propagation modes characterized by two different velocities have been observed
[48, 73]. Simulations of bidimensional JJAs have been reported in reference [74]. Many
more experiments and simulations relevant to this subject are expected in the near future.

5. Final remarks and future perspectives

This review has we hope given a flavour of the extreme liveliness of the research on vortex
dynamics in Josephson junction arrays and, also, of the still numerous open questions,
remaining in spite of the huge efforts that have been made during the last five to six years.
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Figure 12. (a) The dispersion relation for the modes of the 1D array measured at 8.5 K in
the linear regime. (b) Numerical simulations. Note the bending of the dispersion law at the
border of the Brillouin zone and the observation of an optical bra@urtesy of van der Zant

et al [69].

Basically, we first described the up-to-date theoretical framework needed to interpret and
simulate the experimental results. The Lagrangian was written out for the gauge-invariant
phases to show that these are the relevant dynamical variables. From the Lagrangian, then,
we derived the equation of motion and showed that it contains both the current-conservation
law for the knots and the Biot—Savart equation. This latter is the equation that makes the
difference between th&Y-formalism and the ‘discrete JJ' one, allowing one to account
in a complete manner for the mutual inductance of the branch currents and to introduce a
finite penetration depth. Starting from this description one can extend the model to include
granular superconductors and anisotropic arrays. Also, comparison with other discrete
models, such as the discrete sine—Gordon and Frenkel-Kontorova models, becomes easy.
Next, we pointed out how, under certain conditions, the phase dynamics can be mapped
onto the dynamics of a massive particle that moves in a viscous medium while it is subjected
to a periodic potential. This latter is a simple but sometimes very helpful model, providing
one with an intuitive feel for the physics.

Once the theoretical bases had been established we reviewed various aspects of the
single-vortex dynamics in JJAs, starting with the case of the massless vortices. We first
discussed the vortex pinning introduced by the discreteness of the array and showed that
the value of the static barrier to the cell-to-cell vortex transfer can be strongly influenced
by screening. This latter influences, as well as the dynamical value of the barrier, that of
the vortex velocity (the bias current) and, thus, that of the viscosity coefficient. Last, but
more importantly, screening influences the vortex size, the key dynamical parameter, which
strongly depends also on the vertical extent of the array and on the Josephson coupling
asymmetry.
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In addition to the size of the vortex, its asymmetric profile may also have a certain
relevance. We believe that asymmetry is the indicator of a non-conventional dissipation
mechanism that leads to the accumulation of energy in the array and to the development
of a vortex cascade and, in turn, to the alternate-vortex motion. Some points still remain
unclear—for example, the definition of a relaxation time for a JJA perturbed by a massless
vortex—and many more numerical simulations are needed to elucidate the effect of a
magnetic field, the detail of vortex formation and annihilation, the vortex—vortex interaction
and so on. Also looking very interesting and promising is the investigation of the vortex
dynamics in anisotropic JJAs. On the experimental side it is important to point out that only
the average effects of the vortex dynamics have been studied. The study of single-vortex
dynamics in ‘real time’ [58] looks to be a challenging issue for the future.

No less appealing, as has been shown, is the study of massive vortex dynamics.
The pinning energy depends on the vortex mass and new dynamical regimes have to be
considered. The ‘launched’ vortices do not always annihilate at the edge of the JJA, but,
depending on its mass, one can observe vortex reflections and dynamical instabilities. On
increasing the vortex energy (i.e. the velocity and/or mass), additional dissipation mech-
anisms are activated. If these latter are not too intense, ballistic vortex propagation can be
observed. Here again, as already discussed in the text, many aspects of the vortex dynamics
need further and deeper investigation.

Extremely anisotropic JJAs (inductively coupled JJ arrays) have been shown to be very
useful as regards comparing the dynamical properties of discrete arrays with those of their
continuous counterparts: long and stacked Josephson junctions. For example, very elegant
and efficient investigations of the discrete plasma spectrum have been performed and the
shapes of the dispersion curves have been shown to be influenced by the screening effect.
The field of research concerned with inductively coupled arrays is quite new and seems
promising.

Vortex dynamics in JJAs is thus a field in rapid and intensive evolution, whose limits
extend well beyond the ‘borders’ that we have imposed in the present review to include
other aspects of the ‘classical’ vortex dynamics (such as locking, chaos and turbulence) and,
also, many more subjects related to the quantum nature of the vortices [75].
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